背景简介
在工业生产领域,员工的离职对企业的发展和稳定性具有深远的影响。高昂的员工培训成本和对企业竞争力的潜在损害,促使学者和人力资源管理者必须深入了解影响员工离职意图的因素。本章将探讨如何通过深度学习方法分析工业工人在越南的离职意向,以及如何利用机器学习模型优化数据质量,从而提高模型性能。
工业工人离职意向的深度学习研究
研究背景与问题提出
工业工人的频繁离职导致企业必须投入大量资源用于新员工的培训,从而增加了企业的经济负担。此外,员工的离职还会影响企业的创新能力和市场竞争力。因此,本研究旨在识别那些能够使员工对组织有长期归属感的关键因素,以降低员工的离职率。
研究方法与数据集
本研究采用问卷调查方法,结合深度学习模型来分析影响工业工人离职意向的因素。研究对象是越南胡志明市的工业工人,共发放了250份问卷,最终得到有效问卷226份。通过对问卷数据进行分析,研究者试图建立一个能够预测员工离职意图的模型。
模型与假设
组织中的正义与工作干扰个人生活及离职意向
研究发现,组织中的正义感,包括信息正义、程序正义、分配正义和人际正义,对员工的离职意图有显著影响。信息正义强调高级管理层与员工之间的沟通质量和透明度,而人际正义则关注员工在组织中受到的尊重程度。
研究假设的验证
通过深度学习模型的验证,研究者提出了多个假设,并通过实证数据进行检验。结果表明,信息正义对人际正义和离职意图都有积极影响,而人际正义则与离职意图呈负相关。
总结与启发
本研究通过深度学习模型揭示了影响工业工人离职意向的多个关键因素,为企业的员工留存策略提供了理论依据。研究结果强调了信息正义和人际正义在提高员工满意度和忠诚度方面的重要性,同时也指出工作与个人生活的干扰对离职意图的潜在影响。
对企业和人力资源管理者的建议
企业和人力资源管理者应该重视组织中的正义感和工作环境的改善,为员工提供更加公平和透明的沟通机制。此外,应该注意减少工作对员工个人生活的干扰,以促进员工的长期留存。
对未来研究的展望
未来的研究可以进一步探讨不同行业和文化背景下员工离职意图的影响因素,以及如何运用更先进的机器学习技术来提高预测模型的准确性和可靠性。