java单根结构_Java语言程序设计中的单根结构

本文探讨了C++与Java在面向对象编程中的单根结构差异。Java采用单根结构,所有对象继承自Object类,提供通用接口,简化参数传递和垃圾收集。而C++不强制采用单根结构,以保持与C的兼容性和灵活性。单根结构的优势包括统一的类型系统和便于实现垃圾收集,但也可能导致设计上的限制。对于初学者,Java的方案可能更为直观和便捷。
摘要由CSDN通过智能技术生成

在面向对象的程序设计中,由于C++的引入而显得尤为突出的一个问题是:所有类最终是否都应从单独一个基础类继承。在java中(与其他几乎所有OOP语言一样),对这个问题的答案都是肯定的,而且这个终级基础类的名字很简单,就是一个“Object”。这种“单根结构”具有许多方面的优点。

e3fa9b838b2a240d32dbfe3c0a24f418.png

单根结构中的所有对象都有一个通用接口,所以它们最终都属于相同的类型。另一种方案(就象C++那样)是我们不能保证所有东西都属于相同的基本类型。从向后兼容的角度看,这一方案可与C模型更好地配合,而且可以认为它的限制更少一些。但假期我们想进行纯粹的面向对象编程,那么必须构建自己的结构,以期获得与内建到其他OOP语言里的同样的便利。需添加我们要用到的各种新类库,还要使用另一些不兼容的接口。理所当然地,这也需要付出额外的精力使新接口与自己的设计方案配合(可能还需要多重继承)。为得到C++额外的“灵活性”,付出这样的代价值得吗?当然,如果真的需要——如果早已是C专家,如果对C有难舍的情结——那么就真的很值得。但假如你是一名新手,首次接触这类设计,象Java那样的替换方案也许会更省事一些。

单根结构中的所有对象(比如所有Java对象)都可以保证拥有一些特定的功能。在自己的系统中,我们知道对每个对象都能进行一些基本操作。一个单根结构,加上所有对象都在内存堆中创建,可以极大简化参数的传递(这在C++里是一个复杂的概念)。

利用单根结构,我们可以更方便地实现一个垃圾收集器。与此有关的必要支持可安装于基础类中,而垃圾收集器可将适当的消息发给系统内的任何对象。如果没有这种单根结构,而且系统通过一个句柄来操纵对象,那么实现垃圾收集器的途径会有很大的不同,而且会面临许多障碍。

由于运行期的类型信息肯定存在于所有对象中,所以永远不会遇到判断不出一个对象的类型的情况。这对系统级的操作来说显得特别重要,比如违例控制;而且也能在程序设计时获得更大的灵活性。

但大家也可能产生疑问,既然你把好处说得这么天花乱坠,为什么C++没有采用单根结构呢?事实上,这是早期在效率与控制上权衡的一种结果。单根结构会带来程序设计上的一些限制。而且更重要的是,它加大了新程序与原有C代码兼容的难度。尽管这些限制仅在特定的场合会真的造成问题,但为了获得最大的灵活程度,C++最终决定放弃采用单根结构这一做法。而Java不存在上述的问题,它是全新设计的一种语言,不必与现有的语言保持所谓的“向后兼容”。所以很自然地,与其他大多数面向对象的程序设计语言一样,单根结构在Java的设计方案中很快就落实下来。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值