
引言
《异面》 我是一条与你异面的线, 匆匆越过你的头顶, 你不必期盼, 更无须欢喜—— 转瞬我将离你远去。 我们不会有交集, 也无法并行走向远方, 你记得也好, 最好你忘掉, 那段你我间的最短距离。 ——橘子老君
这是橘子老君早年参照徐志摩先生的《偶然》所仿写的作品,首先回顾一些基本概念:
不能置于同一平面的两条直线叫做异面直线;
- 和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线;
- 公垂线与两条直线相交的点所形成的线段,叫做这两条异面直线的公垂线段;
- 两条异面直线公垂线段的长度叫做这两条异面直线的距离.
那么问题来了:
- 任意两条异面直线的公垂线存在吗?唯一吗?
- 在两条异面直线上各任取一点,则两点的最短距离是不是公垂线段的长度?
- 给定两条异面直线的方向向量和直线上一点,如何计算两条异面直线的距离?
公垂线的构造(存在性证明)

如图
[[1]]: 作
过
[[2]]: 取
[[3]]: 若
过
证明:
由 线面平行的性质定理 [[4]],[[4]]: 一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.

由 面面垂直的性质定理 [[5]],
[[5]]: 如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

由 线面垂直的性质定理 [[6]],
[[6]]: 如果一条直线与一平面垂直,则这条直线与平面上的任一条直线都垂直.

又

故
公垂线的唯一性证明
假设异面直线
[[7]]: 若一条直线与一平面内两条相交的直线垂直,则这条直线与这个平面垂直.
公垂线的最小性证明

如图分别任取直线
过
由 面面垂直的性质定理 得,
由 线面垂直的性质定理 得,
当
而由
故当
即公垂线段
异面直线距离的计算
不妨设两条异面直线
方法一:参数方程法
则记
则有

同理可得


两边平方,得关于

在这里代入具体数值,将函数分别看作是
当然也可以用

方法二 法向量投影法
类比计算点到直线距离、点到平面距离的方法,我们都是在直线(平面)上任取一点

如图
确定一个平面
前面在最小性证明中我们已经推得

其中

显然满足条件的

就是一个满足条件的
[[8]]: 向量积,叉积,外积,详见维基百科
这里介绍一种行列式求解线性方程组的方法,不妨设

为了使线性方程组有非零唯一解我们补充一个方程,

则由克莱姆法则 [[9]],得

[[9]]: 用行列式求解线性方程组的方法,详见维基百科
得满足条件的一个的

结语
异面直线的距离这个内容在课本上可能只有区区概念一行,但是为什么把公垂线段的长度作为异面直线距离的定义?公垂线一定存在吗?如何作出公垂线?公垂线唯一吗?如何计算异面直线的距离?这些疑问相信会对不少中学教师和高中生造成一些困扰,所以写了这样一篇长文与大家分享.
- 了解更多橘子老君关于学校教育现状的观点:

- 了解更多橘子数学原创试题社区:

- 了解更多橘子老君在上海“名校”教书的遭遇,欢迎点击
