pyspark写入mysql内存溢出_小数据玩转pyspark(1)

本文探讨了如何使用PySpark处理HDFS数据,以提高数据挖掘速度。通过建立SparkSession并进行数据读取、聚合操作,展示了PySpark在数据ETL中的高效性能。同时,提到了在内存操作中可能遇到的内存溢出问题,并转换数据到Pandas DataFrame进行进一步分析。
摘要由CSDN通过智能技术生成

e89dc1dc493e1be7d1c709a532dd2e9e.png

sqoop:导入结构化数据

kafka:导入流式数据

HDFS:文件存储形式(数据存在Hadoop上是,存在HDFS)怎么访问呢?最传统的肯定是MR,后期有Hive(其实就是把MR通过sql转换了一下,Hive本身并没有存储功能,存储还是HDFS),现在也可以用spark进行数据操作(spark SQL),PIG是一种脚本式操作语言,可以直接操作HDFS

HBASE:键值对存储形式(MPP的数据库)

MR在计算的时候时间比较长,如果做交互式的想立即得到结果的不现实,所以只能做批处理

流式处理,spark\storm, spark streaming流式处理(秒级)

建模主要用的Spark: HDFS数据导入spark,这样可以享受内存级别的运算,如果是在HDFS上是在硬盘上运行,io比较多,数据挖掘的速度非常慢。

spark

spark是hadoop生态的重要一环,一般spark是建立在HDFS基础上,当然你也可以单机版直接运行。

spark批处理数据ETL性能比Hadoop的MR高100倍

中间数据在内存中,更高效、低延迟(但存在内存溢出问题)

机器学习——适合迭代多次,数据重复利用的场合

RDD:只读、可分区的分布式数据集。添加新列必须重新创建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值