一个圆怎么平分三份_模型 | 圆中线与角线所涉及的25个经典模型(动图/结论)...

15052eb47bc121c974e50286aa6842b1.png 推荐阅读

【01】直角三角形中45°处理的40种方法

【02】一题可破万题山之一道好题的多解多变归一

【03】培优拔高 | 初中最值问题的19大类型

【04】神仙试题 | 一道二次函数,经典二十问!

【05】多解 | 勾股定理的16种典型证明方法

【06】最值之将军饮马、将军遛马、将军过河

【07】名师之作:几何最值问题大一统

【08】经典几何模型之“阿式圆”

【09】以一道真题谈变式教学的归一思想

【10】一题多变/一题多问/一题多解/一 一聚多

【11】重难点突破 | 圆题型汇编(精)(附Word)

【12】模型解题 | 巧构辅圆解难题(一题多解)

【13】动态展示 | 圆与切线所涉及的25个经典模型

温馨提示: 点击图片,可查看大图 01.平行于弦的半径 课本上有垂直于弦的半(直)径,即垂径定理,知二推三, 平行于弦的半径也是有特殊之处的。

02209a094a0368431841644b5bbe21c9.png

13abe66692059fc17726f77e5e4d8e3b.gif

又用到了经典的知二推一    356d9022900cb7fad82b856bd8789c7e.png

02.内外平分线

89e26003e8bb0aac04e64906eb02bf04.png

b2d1db24cc3fad5be7fbf85ed872460b.gif

由刚才结论,加上垂径定理结论即可

1d1a4f78b53627540b6646656d517379.png

03.特别圆周角的平分线

7c870ee8a200ab8259e365a5bb5d4c37.png

45a28730f967d5cd6fb410be0edb66a9.gif

依然利用知二推一即可得

71a7ee8672579bedc26264c65c22dcc1.png

04.相交圆三倍弧

c823ec21cbec601e4a6f4fd92721c9cd.png

c8fe3466a1539cbb58d907d66e547203.gif

利用圆周角的倍数关系就是弧的倍数关系

c489956b3d3dcc69f9d1ce9815dd352a.png

05.平行弦等弧 平行弦之间弧是相等的,借助此可以引出很多结论

edb71bb3e52e7a04ae3c502536860a5c.png

e80e05ee607d93d7fc5e0981b681bd29.gif

eacdf4a169748354c8de2f50896729ab.png

06.等弦连中点

相等的弦中点连线和两弦夹角相等,反之亦然

93c5c551cff3210f38cc2fce23f0af6c.png

e30049ce3b6c986f6b20149d34dea4b9.gif

利用同圆中相等的弦心距,对应的弦相等

0385eaf1dfd73ff5ded8192a8ffb700a.png

07.三角形边为直径

任何三角形以一边为直径都有如下结论

0a3dde8e09786645f1153e2ef0e4284a.png

c86fca3f88b7817651cfaad522c504c4.gif

还是倒角,圆中的味道就在于倒角

3b788762031c9066637e67671214641b.png

08.弦弧三等分

bf00e821a0a51ff842d8f78809ff96b2.png

378c9b101fd8c60ff10d30351e8b9c8d.gif

证明1利用了线簇模型 点击查看线簇模型:相似三角形的经典模型上 a9d39faeb493a35e5b5633e99a0b942f.png

c046998bb673e63e5840fd03e5f53061.png

c35a99f073e1b66cf0fc8bd1eebe517c.gif

000217ea66c8364a7533ee885d8f54ae.png

09.总是垂直

e1cd1dafde9482a44b0db28169bf58cf.png

d31249bd31129400e3199c9b87dd5dd2.gif

无论EF在什么位置,垂直都是成立的

 证明主要利用了圆内接四边形的性质,还有四点共圆的证明

a497cedd52a9c78229cbd6c70cdb1c26.png

10.平行弦得共圆

平行的弦夹等弧都知道,这是平行弦得四点共圆

51c698a6d0cdfb341f0b6441d0f97904.png

2d36bcf4bb2d37f9664223da649715ef.gif

主要用到外角定理 ,圆心角圆周角关系等角度的知识,证明共圆用的是等弦对等角e7c4e2fce857f369e8e8a576ed6c0ce9.png

11.取半径长得三倍弧 在圆中取EG等于半长,则有结论

61a2f203c3d41c2c36a140f9c79d6ae0.png

66490123153adc3642f47685e416feef.gif

关键就是倒角,圆中的技术乐趣,尽在倒角上,借机回忆下和角有关的条件,有平行,等腰(还有圆中半径围成等腰),外角定理,内角和定理,圆中的圆周角,圆心角,圆内接四边形的内对角,外角等等。

3c4e312ba8d52da4bacdf5256c24e640.png

12.圆外一点做垂弦 垂径定理知二推三,圆外一点连圆心,再做垂弦其实就差不多

5147ac74c877a54c6edfeba0b124b268.png

958673f03f9098aee7591804faa4b4d7.gif

利用对称性圆周角和圆心角等弧对等角(弧的倍数等于圆周(心)角的倍数),最后结论是经典的字母型的线段关系。推出字母相似即可。

d0d6b9b051f780043c45eed43ed88cc0.png

13.弦外取半径得三倍弧   类似于刚才的三倍弧,在弦外截取半径,可以得到三倍弧(其实就是角三倍)。 19aec29b618d1fc308fc2b1a7e6329b3.png 96e00db7b9677b706660bc2110a3dea2.gif

无疑还是倒角

018874eeef46405c567e80b672cf2412.png

14.直径上的等角 直径上取角相等且同侧,则有相似

f44db4d968e8ca790442243ea223c3b3.png

252d0eb913b7932a7146748241810434.gif

注意相似的对应点。 结合对称和等弧对等圆周角

dfcc77388a2adc997b48fb35ecfc32f4.png

15.向半径做垂线 圆上点向半径做垂线,垂足连线为定值

bf8577937761a7ab43fe8273f616552c.png

4b994a8799e1b20dd234691ceb6d168e.gif

这个证明利用了,定角定半径定弦(二定一为定)延伸阅读: 定弦定角模型全解析进一步探讨定弦定角(最值)问题一道定边定角类型的题目的多种解法

f014fcb58b062beaa9b81f87cfcf5da8.png

16.截圆得等长

f634c711b6dc2b262101a57ccfb273a8.png

17b73f80c16d4d3d906f598180789c24.gif

还是来回倒角,关键用了圆内接四边形的外角等于不相邻的内角

66938d33600f6fbd78e8cb06cbefdd59.png

17.定弦交点的轨迹

c24bee6936c37928287b1c8151fbde96.png

0726cebfcb5736b1a1356883813b296d.gif

证明的原理还是定弦定角,而且两侧的角是互补的。

e06aa488a472e38c6226e404485ebcef.png

a4093c76c9ae766b09ec3d8f8633620c.png

18.弧中点连线截等腰 等腰只需底角相等即可

6710451917f35796c573aba41b39d472.png

0762555055f301916221d3b37b7b7aef.gif

e59d89c3d8242b8ed9ca30a9bf9663ef.png

19.三弧中点得垂直

145eac3b5b0752421a4cd12591c09388.png

这里有两个结论取两个中点的时候可以得到等腰,这个时候再取第三个中点即可得到垂直,证明用的还是 倒角 为主。

67f3d6b4d9dfb373032a52e47d6544fa.png

726866f295f037a795e97a478962f635.gif

20.弧中点得相似 fd45b70f0c5cb79e1bd00b865c0ff498.png 相似还是由角来得到,圆中多的是和角相关的性质。

bc1bc5013cbbd470d95bb68ae56de3c2.png

ba897fa3500b52ab68d06ce3ff8ba26f.gif

21.弧中点得共圆 9386ce2abeaa5f7e3174a82bea8d3946.png 还是弧中点,其实象征的等角,由等角再到共圆。

141b2d81f36438a8bf7ae9ab962440ba.png

8be337682e8f0482d81421d7bfb655dc.gif

22.垂弦切线得等腰 f46f33153aace1fbf8b874d9785bdcfc.png 切线其实也是一个垂直的角度条件啊

4074112e3302c466a26efe16ca57111e.png

08a38fe6573894fca48e659cbfe7bda5.gif

29fea4cee96ec1751b9536912b321387.png

23.垂直的弦得等角

b0a71b632360eb39f0e71685ede2455d.png

利用共圆的知识易得

833f47cf09709f827b09a767d822f233.png

b83f8334b7d05968b646f61300488944.gif

ecc20f223a117be641f4aa39b1f476ff.gif

24.弦的垂线     0360fa5342b5e7702bb48a3f4be2a17a.png 利用了圆中的旋转思路( 延伸阅读:旋转策略,从简单到不简单 )

fd6cd5f40ce6e6adb0e426fea710f59b.png

bc52bb18e6cf650abdd382df03188f97.gif

25.垂弦得角平分671fccae5606744f89389144c1695420.png

简单的一个倒角a7c0511641aa8717be1b74189703171b.png

7d094a4d4fb3742e31189eea0234140a.gif

来源:几何数学(ID:jiheshuxue),作者:司凯;如存在文章/图片/音视频使用不当的情况,或来源标注有异议等,请联系编辑微信:ABC-shuxue第一时间处理。

16664ad6ada382df04b3bd0bbab471bd.png

最后,邀您进下方公号学习

0503c7d098fa4b523483e32fb85aedbd.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值