rancher2.0安装mysql_SpringBoot+Druid+Mybatis配置多数据源

我们在开发一个项目的时候,可能会遇到需要对多个数据库进行读写的需求,这时候就得在项目中配置多个数据源了。在Java项目的开发中,目前最常用的数据操作框架是 Mybatis,开发框架也都基本用上了SpringBoot。而Druid号称最好的数据库连接池,自然也是被广泛使用。

所以本文将演示一下,SpringBoot+Druid+Mybatis如何去配置多数据源。首先在IDEA中创建一个SpringBoot工程:

afbf7539cff200ea4aca3162bae8efcf.png

5779d437536157d455ad53b24458bedf.png

选择一些基本的包:

932bd53f48363a010607f1d4adb39c64.png

完成创建:

6e032caa8b66a0eab75c4155b4a1b174.png

pom.xml配置的依赖如下:

org.springframework.boot

spring-boot-starter-web

org.mybatis.spring.boot

mybatis-spring-boot-starter

1.3.2

mysql

mysql-connector-java

runtime

org.springframework.boot

spring-boot-starter-test

test

com.alibaba

druid-spring-boot-starter

1.1.9

接着就是编辑SpringBoot的配置文件,我这里使用的是yml格式的。需要注意的是,在使用多数据源的情况下,必须区分出主数据源和从数据源,否则会报错。application.yml配置文件内容如下:

spring:

datasource:

#使用druid连接池

type: com.alibaba.druid.pool.DruidDataSource

# 自定义的主数据源配置信息

primary:

datasource:

#druid相关配置

druid:

#监控统计拦截的filters

filters: stat

driverClassName: com.mysql.jdbc.Driver

#配置基本属性

url: jdbc:mysql://127.0.0.1:3306/primary_database?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&autoReconnect=true&useSSL=false

username: root

password: password

#配置初始化大小/最小/最大

initialSize: 1

minIdle: 1

maxActive: 20

#获取连接等待超时时间

maxWait: 60000

#间隔多久进行一次检测,检测需要关闭的空闲连接

timeBetweenEvictionRunsMillis: 60000

#一个连接在池中最小生存的时间

minEvictableIdleTimeMillis: 300000

validationQuery: SELECT 'x'

testWhileIdle: true

testOnBorrow: false

testOnReturn: false

#打开PSCache,并指定每个连接上PSCache的大小。oracle设为true,mysql设为false。分库分表较多推荐设置为false

poolPreparedStatements: false

maxPoolPreparedStatementPerConnectionSize: 20

# 自定义的从数据源配置信息

back:

datasource:

#druid相关配置

druid:

#监控统计拦截的filters

filters: stat

driverClassName: com.mysql.jdbc.Driver

#配置基本属性

url: jdbc:mysql://127.0.0.1:3306/back_database?useUnicode=true&characterEncoding=UTF-8&allowMultiQueries=true&autoReconnect=true&useSSL=false

username: root

password: password

#配置初始化大小/最小/最大

initialSize: 1

minIdle: 1

maxActive: 20

#获取连接等待超时时间

maxWait: 60000

#间隔多久进行一次检测,检测需要关闭的空闲连接

timeBetweenEvictionRunsMillis: 60000

#一个连接在池中最小生存的时间

minEvictableIdleTimeMillis: 300000

validationQuery: SELECT 'x'

testWhileIdle: true

testOnBorrow: false

testOnReturn: false

#打开PSCache,并指定每个连接上PSCache的大小。oracle设为true,mysql设为false。分库分表较多推荐设置为false

poolPreparedStatements: false

maxPoolPreparedStatementPerConnectionSize: 20

然后在项目中新建一个config包,并在该包下创建一个PrimaryDataBaseConfig类,作为我们的主数据源配置类,用于加载自定义的主数据源配置信息,以及创建数据源和会话连接工厂等实例:

package com.dabo.mini.game.zhaxinle.config;

import com.alibaba.druid.pool.DruidDataSource;

import lombok.Data;

import org.apache.ibatis.session.SqlSessionFactory;

import org.mybatis.spring.SqlSessionFactoryBean;

import org.mybatis.spring.annotation.MapperScan;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.boot.context.properties.ConfigurationProperties;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Primary;

import org.springframework.core.io.support.PathMatchingResourcePatternResolver;

import org.springframework.jdbc.datasource.DataSourceTransactionManager;

import javax.sql.DataSource;

import java.sql.SQLException;

/**

* @ProjectName zhaxinle

* @Author: zeroJun

* @Date: 2018/8/16 16:49

* @Description: 主数据源配置类

*/

@Data

@Configuration

// 前缀为primary.datasource.druid的配置信息

@ConfigurationProperties(prefix = "primary.datasource.druid")

@MapperScan(basePackages = PrimaryDataBaseConfig.PACKAGE, sqlSessionFactoryRef = "primarySqlSessionFactory")

public class PrimaryDataBaseConfig {

/**

* dao层的包路径

*/

static final String PACKAGE = "com.dabo.mini.game.zhaxinle.dao.primary";

/**

* mapper文件的相对路径

*/

private static final String MAPPER_LOCATION = "classpath:mappers/primary/*.xml";

private String filters;

private String url;

private String username;

private String password;

private String driverClassName;

private int initialSize;

private int minIdle;

private int maxActive;

private long maxWait;

private long timeBetweenEvictionRunsMillis;

private long minEvictableIdleTimeMillis;

private String validationQuery;

private boolean testWhileIdle;

private boolean testOnBorrow;

private boolean testOnReturn;

private boolean poolPreparedStatements;

private int maxPoolPreparedStatementPerConnectionSize;

// 主数据源使用@Primary注解进行标识

@Primary

@Bean(name = "primaryDataSource")

public DataSource primaryDataSource() throws SQLException {

DruidDataSource druid = new DruidDataSource();

// 监控统计拦截的filters

druid.setFilters(filters);

// 配置基本属性

druid.setDriverClassName(driverClassName);

druid.setUsername(username);

druid.setPassword(password);

druid.setUrl(url);

//初始化时建立物理连接的个数

druid.setInitialSize(initialSize);

//最大连接池数量

druid.setMaxActive(maxActive);

//最小连接池数量

druid.setMinIdle(minIdle);

//获取连接时最大等待时间,单位毫秒。

druid.setMaxWait(maxWait);

//间隔多久进行一次检测,检测需要关闭的空闲连接

druid.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);

//一个连接在池中最小生存的时间

druid.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);

//用来检测连接是否有效的sql

druid.setValidationQuery(validationQuery);

//建议配置为true,不影响性能,并且保证安全性。

druid.setTestWhileIdle(testWhileIdle);

//申请连接时执行validationQuery检测连接是否有效

druid.setTestOnBorrow(testOnBorrow);

druid.setTestOnReturn(testOnReturn);

//是否缓存preparedStatement,也就是PSCache,oracle设为true,mysql设为false。分库分表较多推荐设置为false

druid.setPoolPreparedStatements(poolPreparedStatements);

// 打开PSCache时,指定每个连接上PSCache的大小

druid.setMaxPoolPreparedStatementPerConnectionSize(maxPoolPreparedStatementPerConnectionSize);

return druid;

}

// 创建该数据源的事务管理

@Primary

@Bean(name = "primaryTransactionManager")

public DataSourceTransactionManager primaryTransactionManager() throws SQLException {

return new DataSourceTransactionManager(primaryDataSource());

}

// 创建Mybatis的连接会话工厂实例

@Primary

@Bean(name = "primarySqlSessionFactory")

public SqlSessionFactory primarySqlSessionFactory(@Qualifier("primaryDataSource") DataSource primaryDataSource) throws Exception {

final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();

sessionFactory.setDataSource(primaryDataSource); // 设置数据源bean

sessionFactory.setMapperLocations(new PathMatchingResourcePatternResolver()

.getResources(PrimaryDataBaseConfig.MAPPER_LOCATION)); // 设置mapper文件路径

return sessionFactory.getObject();

}

}

同样的,还需要创建一个从数据源配置类,与主数据源配置类不同的是,从数据源配置类不能使用@Primary注解,即表示它是一个从数据源。代码如下:

package com.dabo.mini.game.zhaxinle.config;

import com.alibaba.druid.pool.DruidDataSource;

import lombok.Data;

import org.apache.ibatis.session.SqlSessionFactory;

import org.mybatis.spring.SqlSessionFactoryBean;

import org.mybatis.spring.annotation.MapperScan;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.boot.context.properties.ConfigurationProperties;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.core.io.support.PathMatchingResourcePatternResolver;

import org.springframework.jdbc.datasource.DataSourceTransactionManager;

import javax.sql.DataSource;

import java.sql.SQLException;

/**

* @ProjectName zhaxinle

* @Author: zeroJun

* @Date: 2018/8/16 16:49

* @Description: 后台数据源配置类

*/

@Data

@Configuration

@ConfigurationProperties(prefix = "back.datasource.druid")

@MapperScan(basePackages = BackDataBaseConfig.PACKAGE, sqlSessionFactoryRef = "backSqlSessionFactory")

public class BackDataBaseConfig {

/**

* dao层的包路径

*/

static final String PACKAGE = "com.dabo.mini.game.zhaxinle.dao.back";

/**

* mapper文件的相对路径

*/

private static final String MAPPER_LOCATION = "classpath:mappers/back/*.xml";

private String filters;

private String url;

private String username;

private String password;

private String driverClassName;

private int initialSize;

private int minIdle;

private int maxActive;

private long maxWait;

private long timeBetweenEvictionRunsMillis;

private long minEvictableIdleTimeMillis;

private String validationQuery;

private boolean testWhileIdle;

private boolean testOnBorrow;

private boolean testOnReturn;

private boolean poolPreparedStatements;

private int maxPoolPreparedStatementPerConnectionSize;

@Bean(name = "backDataSource")

public DataSource backDataSource() throws SQLException {

DruidDataSource druid = new DruidDataSource();

// 监控统计拦截的filters

druid.setFilters(filters);

// 配置基本属性

druid.setDriverClassName(driverClassName);

druid.setUsername(username);

druid.setPassword(password);

druid.setUrl(url);

//初始化时建立物理连接的个数

druid.setInitialSize(initialSize);

//最大连接池数量

druid.setMaxActive(maxActive);

//最小连接池数量

druid.setMinIdle(minIdle);

//获取连接时最大等待时间,单位毫秒。

druid.setMaxWait(maxWait);

//间隔多久进行一次检测,检测需要关闭的空闲连接

druid.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);

//一个连接在池中最小生存的时间

druid.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);

//用来检测连接是否有效的sql

druid.setValidationQuery(validationQuery);

//建议配置为true,不影响性能,并且保证安全性。

druid.setTestWhileIdle(testWhileIdle);

//申请连接时执行validationQuery检测连接是否有效

druid.setTestOnBorrow(testOnBorrow);

druid.setTestOnReturn(testOnReturn);

//是否缓存preparedStatement,也就是PSCache,oracle设为true,mysql设为false。分库分表较多推荐设置为false

druid.setPoolPreparedStatements(poolPreparedStatements);

// 打开PSCache时,指定每个连接上PSCache的大小

druid.setMaxPoolPreparedStatementPerConnectionSize(maxPoolPreparedStatementPerConnectionSize);

return druid;

}

@Bean(name = "backTransactionManager")

public DataSourceTransactionManager backTransactionManager() throws SQLException {

return new DataSourceTransactionManager(backDataSource());

}

@Bean(name = "backSqlSessionFactory")

public SqlSessionFactory backSqlSessionFactory(@Qualifier("backDataSource") DataSource backDataSource) throws Exception {

final SqlSessionFactoryBean sessionFactory = new SqlSessionFactoryBean();

sessionFactory.setDataSource(backDataSource);

sessionFactory.setMapperLocations(new PathMatchingResourcePatternResolver()

.getResources(BackDataBaseConfig.MAPPER_LOCATION));

return sessionFactory.getObject();

}

}

完成以上配置后,该工程就具有连接两个数据库的能力了,如果要配置两个以上的数据库也是一样的,配置多个从数据源即可。业务代码层面除了需要将不同的数据源相关的mapper、dao、pojo分包存放方便扫描之外,代码上的编写还是和之前单数据源的时候一样,所以这里就不贴出业务代码了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值