五大技巧
根据函数解析式确认函数图像一直是高考的热点,主要以选择题的形式出现。 掌握下面这五个技巧,便可快速判断函数的图像。 技巧一: 定义域 影响函数定义域的限制条件主要有: ①分式中的分母不为0 ②偶次方根下的式子大于等于0 ③对数函数的真数大于0 ④ 0的非正数次方无意义 ⑤正切函数y=tanx,x≠kπ+π/2(k∈Z) 技巧二: 奇偶性 在函数定义域关于y轴对称的前提下,判断f(x)与f(-x)的关系: 如果f(x)+f(-x)=0,则为奇函数,函数图像关于原点对称 如果f(x)=f(-x),则为偶函数,函数图像关于y轴对称 技巧三: 特殊值点 根据函数表达式, 当x取特殊值时,确定y的取值,从而确定函数的图像 技巧四: 极限思想 当x→+∞,x→-∞,x→a +或x→a -时, 先确定函数表达式的正负,然后再判断大小。这是“根据函数表达式判断函数图像”非常重要的解题思想。 技巧五: 求导 对函数表达式进行求导,从而确定 函数的单调性和极值情况。 备注: 利用函数表达式确认函数图像,通常需要结合上面五种方法中的2-3种进行判断。经典例题