情感计算:从EEG数据分析到模型训练

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:情感计算结合信息技术、心理学、神经科学,致力于通过计算机算法理解人类情感。本文档提供的数据包包含用于情感反应分析的脑电波数据。脑电图设备捕捉的大脑电信号揭示了与思维、感知和情绪状态相关的变化。从数据采集到模型训练,本文介绍了分析脑电波数据的关键步骤,包括频率和时间序列分析、特征提取、情感分类器训练及模型评估优化。情感计算技术的应用场景广泛,如人机交互和心理咨询等。 情感计算数据(论文中使用)

1. 情感计算简介

情感计算,作为人工智能的一个交叉分支,旨在创建能够识别、处理和模拟人类情感的系统和设备。它结合了心理学、认知科学、计算机科学与信息技术等多个学科领域。情感计算的研究和应用不仅促进了人机交互界面的自然化,而且推动了情感智能的发展,使得机器能够更好地理解和适应用户的情绪状态。在这一章中,我们将探索情感计算的基本原理,以及它如何通过脑电波和其他生物信号的分析,来解读和响应用户的情感变化。情感计算的核心挑战在于如何准确地捕获和解释人类复杂多变的情感信号,并将其转化为机器可理解的数据。随着技术的进步,情感计算的应用逐渐扩展到智能健康、教育、客服、游戏和汽车安全等领域,为人类生活带来了新的变革。

2. 脑电波数据采集方法

2.1 脑电波的基础知识

2.1.1 脑电波的产生与分类

脑电波是由大脑神经元的电活动产生的电信号,在大脑皮层的表面可以检测到这些信号。它们可以反映大脑在不同状态下的电活动水平和模式。根据频率的不同,脑电波大致可以分为以下几类:

  • 德尔塔波(Delta Waves) :频率在0.5到4赫兹之间,通常在深度睡眠时出现,表明大脑处于深度休息状态。
  • 西塔波(Theta Waves) :频率在4到8赫兹之间,常见于轻度睡眠或半清醒状态。
  • 阿尔法波(Alpha Waves) :频率在8到13赫兹之间,通常在放松状态、闭眼但不睡着时出现。
  • 贝塔波(Beta Waves) :频率在13到30赫兹之间,与警觉状态、集中注意力相关。
  • 伽马波(Gamma Waves) :频率在30赫兹以上,与认知功能、信息处理以及意识状态有关。

每种波形都与大脑在不同状态下的功能活动密切相关,了解这些波形对研究大脑功能及情感状态至关重要。

2.1.2 脑电波在情感计算中的应用

情感计算利用脑电波来理解个体的情感状态,进而实现人机交互。在情感计算中,脑电波分类有助于识别用户的情感反应,比如情绪的积极或消极、紧张或放松等。通过识别特定的脑电波模式,系统可以对用户的情绪状态做出反应,提供更加个性化和敏感的交互体验。

2.2 数据采集设备介绍

2.2.1 EEG设备工作原理

脑电图(EEG)是一种用于记录大脑电活动的设备,它能够检测和记录头皮上的脑电波。EEG设备的工作原理基于测量大脑皮层神经元电活动产生的电流变化。这些变化通过头皮上的电极传导到放大器,然后被转换成数字信号进行分析。EEG设备能够提供高时间分辨率的脑电活动记录,适用于捕捉快速变化的脑电波模式。

2.2.2 采集设备的选择与比较

在采集脑电波数据时,有多种EEG设备可供选择,包括湿电极和干电极等类型。湿电极通常精度更高,但需要准备导电凝胶,佩戴过程较为繁琐;干电极操作简便,易于佩戴,但通常信号噪声更大。此外,设备的成本、便携性和信号质量也是重要的比较因素。研究者需要根据具体研究需求和预算,选择最合适的EEG设备。

2.3 数据采集的实验设计

2.3.1 实验环境与被试者选取

进行脑电波数据采集时,实验环境的控制至关重要,因为它可以影响到被试者的行为和脑电波数据的准确性。例如,在一个隔音、温度和光线适宜的室内环境中进行实验,有助于减少环境干扰。此外,被试者的选择也需要严格控制,如确保被试者年龄、性别、健康状况等符合实验要求,并且在实验前避免摄入咖啡因、酒精等可能影响脑电波的物质。

2.3.2 实验流程与质量控制

实验流程的合理设计对于脑电波数据的采集至关重要。一个典型的实验流程可能包括:被试者准备、电极安置、基线记录、任务执行和数据记录等阶段。为了保证数据质量,研究人员必须进行实时监控和检查,确保信号稳定并且无显著的伪迹。在数据采集后,通过软件工具进行伪迹去除和预处理也是不可或缺的质量控制步骤。

实验流程图
+----------------+     +----------------+     +----------------+
|  准备阶段      | --> |  电极安置      | --> |  基线记录      |
+----------------+     +----------------+     +----------------+
                                                          |
                                                          |
                                                          V
                                              +----------------+
                                              |  任务执行      |
                                              +----------------+
                                                          |
                                                          |
                                                          V
                                              +----------------+
                                              |  数据记录      |
                                              +----------------+

第三章:频率分析应用

3.1 脑电波频率成分解析

3.1.1 各频段脑电波特征

在频率分析中,首先需要了解不同频段脑电波的典型特征。这些特征反映了大脑在不同状态下的活动模式,对于情感状态的判断至关重要:

  • 德尔塔波 :主要出现在深度睡眠阶段,也可以在冥想中出现,与大脑的放松状态相关。
  • 西塔波 :通常与创造性思维、情绪波动有关,常见于半睡半醒或深度冥想状态。
  • 阿尔法波 :与清醒放松的状态相关,是冥想和放松训练中常见的脑电波。
  • 贝塔波 :与警觉、专注和焦虑状态相关,一般在清醒活动时出现。
  • 伽马波 :与解决问题、处理复杂信息、意识觉醒状态相关。
3.1.2 频率成分与情感状态的关联

每种脑电波的出现频率和强度都可以与特定的情感状态关联。例如,高频率的贝塔波活动可能与紧张或焦虑相关,而阿尔法波的增加通常表明放松状态。通过分析这些频率成分,可以推断出被试者的情感状态,并在情感计算中应用这些信息。

3.2 傅里叶变换在频率分析中的应用

3.2.1 傅里叶变换基础

傅里叶变换是信号处理中的一种数学方法,它可以将时域信号转换为频域信号,揭示信号中包含的各种频率成分。对于脑电波数据,傅里叶变换使我们能够分析不同频率下的脑电活动,并且识别出特定情感状态下的频率模式。

傅里叶变换的数学表达式如下:

F(ω) = ∫ f(t) e^(-iωt) dt

其中, F(ω) 是频域表示的信号, f(t) 是原始时域信号, ω 是角频率。

3.2.2 频率域信号的处理方法

在频率域对脑电波进行处理通常包括滤波、功率谱密度估计等步骤。滤波用于去除不需要的频率成分,而功率谱密度估计则用于量化特定频率下的信号能量。这些方法能够帮助我们从脑电波数据中提取有关情感状态的关键信息。

下面是一个简单的傅里叶变换示例代码,用于分析脑电波数据:

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

# 假设x是采集到的脑电波时域信号,Fs是采样频率
x = np.random.rand(1024)
Fs = 256

# 执行快速傅里叶变换
X = fft(x)
# 计算频率轴
freqs = fftfreq(len(x), d=1.0/Fs)

# 绘制幅度谱
plt.plot(freqs, np.abs(X))
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.title('Brainwave Frequency Components')
plt.show()

通过上述代码段,我们能够得到脑电波信号的幅度谱,进一步地分析其中的频率成分,进而理解被试者可能的情感状态。在实际应用中,更复杂的信号处理方法会使用到诸如功率谱密度估计、滤波器设计等技术,以便更准确地分析脑电波。

3. 频率分析应用

3.1 脑电波频率成分解析

3.1.1 各频段脑电波特征

脑电波(EEG)是大脑神经元电活动产生的电波,这些波形按照频率的不同可以分为几个基本频段:德尔塔(Delta)、西塔(Theta)、阿尔法(Alpha)、贝塔(Beta)和伽马(Gamma)波。每个频段都有其独特的特征和对应的脑部功能。

  • 德尔塔波 (0.5-4 Hz):主要在深度睡眠期间出现,成人通常在深度休息或昏迷状态下才能检测到这种波。
  • 西塔波 (4-8 Hz):通常与放松状态和轻度睡眠相关联。
  • 阿尔法波 (8-13 Hz):在闭眼、放松且意识清醒的状态下最为明显,常见于后脑勺区域。
  • 贝塔波 (13-30 Hz):与警觉状态、专注和解决问题的脑活动相关。
  • 伽马波 (30 Hz以上):与认知处理、信息整合以及记忆形成有关。

3.1.2 频率成分与情感状态的关联

不同的情感状态往往伴随着特定的脑电波频段变化。例如,焦虑和兴奋时,大脑活动增加,贝塔波的活动水平会上升;而放松和冥想状态下,阿尔法波的水平可能会增加。研究者通过分析不同频段的脑电波活动,可以进一步了解情感状态的神经基础。

  • 阿尔法波 :与放松、冥想以及创意活动关联较大。
  • 贝塔波 :通常与高度警觉、解决问题和情绪紧张有关。
  • 伽马波 :被认为是连接不同脑区,处理复杂认知任务的重要频段,尤其在处理情绪信息时作用显著。

3.2 傅里叶变换在频率分析中的应用

3.2.1 傅里叶变换基础

傅里叶变换是一种数学工具,用于将信号从时域转换到频域,其核心思想是将复杂的信号分解为一系列简单正弦波的叠加。在脑电波频率分析中,使用傅里叶变换可以揭示信号中包含哪些频率成分以及它们各自的强度。对于情感计算来说,通过傅里叶变换分析脑电波,可以帮助我们理解在不同情感状态下,大脑产生的频率成分有何不同。

3.2.2 频率域信号的处理方法

在得到频域信号后,可以通过进一步的处理来提取对情感状态分析有用的特征。以下是处理频率域信号的一些方法:

  • 频谱分析 :通过观察频谱图,可以直观地看到信号在不同频率下的能量分布,有助于理解情感状态与脑电波频率成分之间的关系。
  • 滤波器设计 :使用低通、高通、带通和带阻滤波器,可以对信号进行预处理,提取特定频率范围的脑电波成分。
  • 功率谱密度估计 (PSD):计算频率域信号的功率谱密度,可以量化各个频率成分的能量或强度,用于情感状态的分类和识别。
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft

# 假设 signal 是一个采集到的脑电信号时间序列数据
signal = np.random.randn(1024)

# 执行快速傅里叶变换
signal_fft = fft(signal)

# 计算频率轴对应的值
n = len(signal)
timestep = 1.0 / 128.0  # 假设采样率为128Hz
freqs = np.fft.fftfreq(n, d=timestep)

# 绘制频谱图
plt.figure(figsize=(12, 6))
plt.plot(freqs[:n // 2], np.abs(signal_fft)[:n // 2])
plt.xlabel('Frequency (Hz)')
plt.ylabel('Amplitude')
plt.title('Single-Sided Amplitude Spectrum of EEG Signal')
plt.grid()
plt.show()

在上述代码中,我们首先创建了一个模拟的脑电信号,然后使用 fft 函数计算其快速傅里叶变换。接着计算频率轴对应的值,并绘制出信号的单边振幅频谱图。通过此图可以观察信号能量主要集中在哪些频率段。

请注意,上述代码仅仅是一个简单的示例,实际应用中,脑电信号会更复杂且需要更多的预处理步骤。

4. 时间序列分析方法

4.1 时间序列信号的特性

时间序列的概念与重要性

时间序列是按照时间顺序排列的一系列数据点,通常以等间隔时间测量。在脑电波分析中,时间序列数据是指连续采集的脑电活动记录。理解时间序列的概念对于预测和解释脑电波数据至关重要。时间序列分析允许我们挖掘数据中的趋势、季节性变化和循环模式,这些模式在脑电波中可能与情感状态变化有关。

时间序列分析的常见方法

时间序列分析的常见方法包括自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA)等。这些方法可以用来预测未来的脑电波趋势,以及识别和分离出噪声成分。特别地,自回归积分滑动平均模型(ARIMA)是另一个强大工具,它结合了差分和移动平均,适用于非平稳数据的分析。

4.2 时间序列信号的预处理

去噪技术

由于采集到的脑电波信号常包含噪声,因此需要进行去噪处理。去噪的方法包括滤波器设计、小波变换和奇异谱分析等。滤波器可以根据不同的频率范围滤除噪声,而小波变换能够同时在时间和频率域中分析信号,有助于分离出有用信号和噪声成分。

信号平滑与归一化

信号平滑通常通过移动平均或加权移动平均方法实现,旨在减少短时间内的波动,以更清晰地显示出长期趋势。归一化则是将数据调整到一个标准范围,如0到1之间,以消除不同设备或个体之间的量级差异,使时间序列数据具有可比性。

表格:时间序列预处理技术比较

| 预处理技术 | 作用机制 | 适用情况 | | -------------- | -------------------------------------- | ------------------------------- | | 滤波器 | 减少噪声,保留有效频率范围 | 信号噪声干扰较大时 | | 小波变换 | 多尺度分析,分解信号成分 | 需要精细分析信号局部特征时 | | 奇异谱分析 | 提取时间序列中的主要信号成分 | 非线性和非平稳数据处理 | | 移动平均 | 平滑信号,突出趋势 | 信号趋势分析 | | 加权移动平均 | 对近期数据给予更大权重,平滑趋势 | 更关注近期数据变化 | | 数据归一化 | 将数据缩放到标准范围,消除尺度差异 | 需要对不同数据集进行比较分析时 |

flowchart LR
    A[原始脑电波信号] --> B[滤波器]
    B --> C[去噪信号]
    C --> D[小波变换]
    D --> E[奇异谱分析]
    E --> F[信号平滑]
    F --> G[归一化处理]
    G --> H[预处理完成信号]

代码:使用Python进行时间序列去噪

import numpy as np
import pandas as pd
from scipy.signal import butter, lfilter

def butter_lowpass_filter(data, cutoff, fs, order):
    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = butter(order, normal_cutoff, btype='low', analog=False)
    y = lfilter(b, a, data)
    return y

# 假定原始脑电波数据载入为 'rawSignal',采样率为128Hz
fs = 128
cutoff = 1.0  # 截止频率,例如1Hz
order = 6     # 滤波器阶数

# 应用低通滤波器
filteredSignal = butter_lowpass_filter(rawSignal, cutoff, fs, order)

# 绘制滤波前后的信号对比图
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(2,1,1)
plt.title('Raw EGG Signal')
plt.plot(rawSignal)
plt.subplot(2,1,2)
plt.title('Filtered EGG Signal')
plt.plot(filteredSignal)
plt.tight_layout()
plt.show()

上述Python代码演示了一个简单的一维信号低通滤波器的应用。代码中的函数 butter_lowpass_filter 实现了Butterworth低通滤波器的设计,并通过 lfilter 函数应用于信号中。该滤波器的参数可以依据实际情况进行调整。滤波后的信号会减少高频噪声成分,更加平滑,更适合后续的分析工作。

在实际应用中,我们可以通过对比滤波前后信号的变化来评估去噪效果,并根据脑电波数据的特性调整滤波器参数,以达到最佳的去噪效果。

5. 特征提取技术

5.1 特征提取的概念与重要性

5.1.1 特征提取在模式识别中的作用

在模式识别领域中,特征提取是指从原始数据中提取出最能代表数据本质和差异性的信息,以减少数据的维度,简化计算复杂度,提高识别的准确性和效率。例如,在脑电波分析中,原始脑电图(EEG)信号包含了大量的时间序列数据,但是并非所有的数据都与我们研究的情感状态相关。通过特征提取,我们可以筛选出与情感状态高度相关的脑电波段特征,如特定频率的振幅、波形特征等。这些经过提炼的特征将成为后续机器学习模型训练的基础数据,模型能否有效地识别情感状态在很大程度上取决于这些特征的质量和表达能力。

5.1.2 常见的特征提取技术

特征提取技术可以分为以下几类:

  • 时间域特征提取 :这类方法直接从原始信号的时间序列中提取特征,常用的统计量包括均值、方差、峰值、斜率变化等。
  • 频率域特征提取 :利用傅里叶变换等变换手段,将时间序列信号转换为频率域信号,从而提取频率相关的特征。
  • 时频域特征提取 :同时考虑信号的时间和频率特性,如小波变换可以提供信号在不同时间点的频率信息。

以上特征提取方法往往需要结合具体的应用场景进行选取和调整,以达到最佳的性能。

5.2 特征提取在脑电波中的应用

5.2.1 时间域特征

在时间域特征提取中,我们可以关注脑电波信号的特定时间点的特征。例如:

  • 波峰和波谷 :在脑电波信号中识别出每一个波峰和波谷的位置,并计算它们的幅度。
  • 波形轮廓 :通过绘制脑电波的波形轮廓,提取轮廓线的特征,如曲线的斜率、曲率等。

这些特征能够反映出脑电波的瞬间变化,有助于识别情绪波动的时刻。

5.2.2 频率域特征

在频率域特征提取中,我们主要关注脑电波各个频率成分的信息:

  • 功率谱密度(PSD) :对脑电波信号进行快速傅里叶变换(FFT),计算不同频率成分的功率谱密度。
  • 带宽功率比 :计算特定频带内的功率与总功率的比值,这有助于识别情绪状态的变化。

频率域特征能够反映出脑电波在不同频率段的活动情况,与情绪状态之间存在密切联系。

5.2.3 时频域联合特征

时频域联合特征是综合利用时间域和频率域的特征,可以提供更全面的信号分析信息:

  • 小波变换 :通过小波变换得到信号在不同时间点和不同频率成分的能量分布,适合于非平稳信号的分析。
  • 希尔伯特-黄变换(HHT) :将信号分解为固有模态函数(IMF),再对每个IMF进行希尔伯特变换,获取时频谱。

联合特征不仅能够反映脑电波信号的局部特征,还能够揭示信号的动态变化过程。

接下来的章节会详细探讨如何运用这些特征提取技术进行情感状态的预测与分析。

6. 机器学习模型训练

6.1 机器学习的基本原理

6.1.1 机器学习流程概述

机器学习是一种让计算机系统从经验中学习并改进性能的技术,而无需进行明确的编程。一个典型的机器学习工作流程通常包括数据的采集和处理、特征提取、模型的选择与训练、评估、以及最终的部署和监控。在这个过程中,关键在于数据的质量、特征的表征能力、模型对数据的泛化能力,以及在实际使用中模型的稳定性和可维护性。

6.1.2 监督学习与非监督学习模型介绍

在机器学习中,模型通常可以分为监督学习和非监督学习两大类。监督学习模型通过学习带标签的数据集来预测或分类新数据。常见的监督学习算法包括线性回归、支持向量机、决策树和神经网络等。而非监督学习则处理的是未标记的数据,旨在发现数据中隐含的结构或模式。聚类分析是其中一种常见的技术,比如K-means聚类、层次聚类和DBSCAN等。

6.2 模型选择与训练策略

6.2.1 选择适合情感计算的模型

选择正确的模型对于情感计算的成功至关重要。情感计算往往处理的是高维的时间序列数据,如脑电波信号,因此选择的模型需要能够处理这类数据的复杂性和动态性。常用的模型包括支持向量机(SVM)、随机森林(RF)、长短期记忆网络(LSTM)、卷积神经网络(CNN)和变换器(Transformers)。这些模型各有优势和局限性,例如,SVM在处理非线性分类问题时表现出色,而LSTM非常适合处理序列数据。

6.2.2 训练过程中的参数优化与交叉验证

模型训练是一个涉及多个参数和超参数调整的过程。参数是模型在训练过程中学习得出的,而超参数则是在训练之前设置的,例如学习率、正则化项、网络层数等。为了找到最佳的超参数组合,可以使用网格搜索或随机搜索等方法。交叉验证是一种评估模型泛化能力的技术,通过将数据分成多个子集并进行多次训练和验证,可以减少过拟合的风险。

from sklearn.model_selection import GridSearchCV, cross_val_score

# 以SVM模型为例,设置超参数范围进行网格搜索
param_grid = {
    'C': [0.1, 1, 10, 100],
    'gamma': [1, 0.1, 0.01, 0.001],
    'kernel': ['rbf', 'poly']
}

# 使用GridSearchCV进行网格搜索
grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)

# 交叉验证评估模型
scores = cross_val_score(grid, X_train, y_train, cv=5)

print("Mean cross-validation score: %.2f" % scores.mean())

在上述代码中,我们使用 GridSearchCV 对支持向量机(SVM)的三个超参数C、gamma和kernel进行网格搜索,通过交叉验证来评估模型的性能,并输出平均交叉验证分数。代码逻辑是根据数据集来迭代不同的参数组合,并使用交叉验证来测试每个组合的有效性,最终选择出表现最好的一组参数。

通过这种方式,模型训练的过程能够更加系统和科学,不仅提升了模型在训练集上的性能,也确保了模型对未见数据的泛化能力。

7. 情感状态预测与应用场景

7.1 情感状态预测的实现

情感状态的预测是情感计算领域的一个核心课题。构建一个准确的预测模型需要从数据预处理到模型训练等多个步骤的精心设计和优化。

7.1.1 预测模型的构建

首先,要构建一个预测模型,我们需要采集一定量的脑电波数据,并对其进行有效的预处理。这通常包括数据清洗、去噪、特征提取等步骤。预处理后的数据将用于训练不同的机器学习模型,以找到最适合预测特定情感状态的模型。

# 示例:使用Python的sklearn库构建情感状态预测模型
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 假设 X 是脑电波特征数据,y 是情感状态标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用随机森林分类器作为预测模型
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)

# 使用测试集评估模型性能
predictions = model.predict(X_test)
print(f"模型准确度: {accuracy_score(y_test, predictions)}")

7.1.2 预测结果的解读与应用

预测模型的构建只是开始,更重要的是如何解读模型的输出结果,并将这些信息应用于实际场景中。例如,通过情感状态预测,我们可以为用户提供个性化的娱乐推荐,或者在医疗领域帮助医生更好地理解患者的感受。

7.2 情感计算的应用场景

情感计算技术的实用性非常广泛,它能够为多个行业带来革命性的改变。

7.2.1 情感识别技术的市场应用

在市场应用方面,情感识别技术可以应用于智能客服系统,通过分析客户的语音和表情来实时调整服务策略,提高用户满意度。同样,它也可以被用于广告行业,通过分析观众的情感反应来评估广告效果。

7.2.2 未来趋势与发展方向

未来,随着技术的进一步发展,情感计算将更加智能化和人性化。我们可以期待更自然的交互方式,例如与虚拟现实(VR)和增强现实(AR)技术的结合,让机器能够更好地理解用户的情绪和需求。

graph LR
A[情感状态预测模型] -->|输出预测结果| B[智能客服系统]
A -->|实时情感反馈| C[个性化推荐引擎]
A -->|情感分析报告| D[广告效果评估]

E[情感计算未来趋势] -->|人工智能技术融合| F[智能虚拟助手]
E -->|交互体验优化| G[情绪感知智能穿戴设备]
E -->|社会行为分析| H[心理健康监测应用]

通过这一系列的应用场景和技术趋势,我们可以看出情感计算不仅能够对现有技术进行增强和优化,还能开辟全新的应用领域。情感计算正逐渐成为人们日常生活中不可或缺的一部分。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:情感计算结合信息技术、心理学、神经科学,致力于通过计算机算法理解人类情感。本文档提供的数据包包含用于情感反应分析的脑电波数据。脑电图设备捕捉的大脑电信号揭示了与思维、感知和情绪状态相关的变化。从数据采集到模型训练,本文介绍了分析脑电波数据的关键步骤,包括频率和时间序列分析、特征提取、情感分类器训练及模型评估优化。情感计算技术的应用场景广泛,如人机交互和心理咨询等。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值