图片底下配的文字叫什么_图片下面加文字 图片周边留白加文字,照片加边框并在照片下面加文字...

所谓的图片留白加文字就是在照片的顶部、底部或其它地方空出一块地方,用来添加一些图片文字说明或自己喜欢的文字。这种效果的图片大家肯定有见过,最常见的就是微博了,这种效果的图片会显得比较的精致和美观。其实做出这种效果并不难,只需要扩展图片的画布大小,然后输入相关的文字就行了。

效果展示

开始操作前先准备好相应的图片素材,然后按照上面的地址下载安装相应的软件,安装后双击运行软件就行了。选择“文件”菜单下面的“打开”,在弹出的打开对话框中选择并打开所用到的图片素材。

图片素材打开后选择“图像”菜单下面的“画布大小”,弹出画布大小对话框。勾选“相对”,接着设置画布宽高的扩展数值,如果想图片的四周都有留白区域,那只需要直接输入宽高数值即可,如果只想图片底部或顶部有留白区域,则需要点击相应的定位箭头后在再输入数值。还可以设置留白区域的颜色,设置好后点击“确定”。

图片留白区域已经出来了,现在来输入文字内容。选择工具栏上的“钢笔工具”,在图片留白区域单击,然后输入相关的文字内容,接着在界面上方设置文字的字体、文字大小以及文字颜色。用工具栏的第一个移动工具可以更改文字的位置。

现在图片效果已经差不多出来了,我们还可以给图片添加一个边框,使图片看上去不那么单调。先选择背景图层,再选择工具栏上的“矩形选框工具”,然后按住鼠标左键在图片上面拖动,拖出一个矩形的选区,这个选区就是要添加边框的位置。要是想重新选择选区,按快捷键“Ctrl+D”,然后重新选择即可。

选择“编辑”菜单下面的“描边”,弹出描边对话框,设置描边的宽度、描边颜色以及描边的位置等,设置好后点击“确定”返回主界面。图片描边还有一种方式,先按ctrl+A全选图像,再选择编辑菜单下的描边,然后设置描边的相关参数就行了。这两种描边效果有点不一样,都可以尝试下。

最后我们就可以对图片进行保存了,选择“文件”菜单下面的“存储为”,弹出存储为对话框,在当前对话框设置图片保存的位置、名称以及保存类型,最后点击“保存”。

给图片添加文字的时候可以自行选择添加横排文字还是添加竖排文字,如果留白区域是在图片左右两侧,那建议大家添加竖排文字,右击工具栏上面的钢笔工具可以选择文字类型。图片留白区域可以通过定位箭头来设置,如果我要在图片底部留白,就要先点击向上的箭头,然后输入高度值,左右留白则输入宽度值。

以上,就是今天关于怎样给图片留白并添加文字的相关操作。在设置图片留白位置的时候大家可以多尝试几次,其实并不复杂,不同的设置会有不一样的效果。大家在操作过程中有什么问题可以联系我们的客服qq41442901哦。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了强法律法规建设、人才储备和基础设施建设等建议。低空经济正速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值