当公式或文字展 示不完全时,记得向左←滑动哦!
摘要: 当题目中给出二阶导函数正负时,可以得到函数和导函数存在某种不等式关系,此时需要两边进行积分,积分时一定要注意积分变量的选取。【公众号:岩宝数学考研】
二阶导函数正负模型
如果在涉及到定积分的题目中出现了
此时可以得到函数的凹凸性,然后可以推出此函数图像在任意一条切线的上方或下方,即与满足某种不等式关系。
不妨我们令
此时可得函数为凸函数,可得【公众号:岩宝数学考研】
如果有同学对凹凸函数性质不是很熟悉,也没有关系,我们可以利用泰勒公式得
由于【公众号:岩宝数学考研】
即可得【公众号:岩宝数学考研】
(若是凹函数,不等式符号正好相反)注意:
在涉及到定积分的考研真题中,通常需要对上述不等式进行积分,有时需要对进行积分,有时需要对进行积分。
1.若对进行积分,那么此时可以把当成已知的数,即可得
此时可化为【公众号:岩宝数学考研】
2.若对进行积分,那么此时可以把