一阶导与二阶导的关系_数学分析|第九章 定积分关于二阶导函数正负和定积分结合证明不等式问题总结...

本文总结了二阶导数正负与定积分的关系,通过泰勒公式推导函数的凹凸性,并给出了多个考研真题实例,讲解如何根据二阶导数的正负选择积分变量来证明不等式。
摘要由CSDN通过智能技术生成

当公式或文字展 示不完全时,记得向左←滑动哦!

摘要: 当题目中给出二阶导函数正负时,可以得到函数和导函数存在某种不等式关系,此时需要两边进行积分,积分时一定要注意积分变量的选取。【公众号:岩宝数学考研】

二阶导函数正负模型

如果在涉及到定积分的题目中出现了

此时可以得到函数的凹凸性,然后可以推出此函数图像在任意一条切线的上方或下方,即与满足某种不等式关系。
不妨我们令

此时可得函数为凸函数,可得【公众号:岩宝数学考研】

如果有同学对凹凸函数性质不是很熟悉,也没有关系,我们可以利用泰勒公式得

由于【公众号:岩宝数学考研】

即可得【公众号:岩宝数学考研】

(若是凹函数,不等式符号正好相反)注意:
在涉及到定积分的考研真题中,通常需要对上述不等式进行积分,有时需要对进行积分,有时需要对进行积分。
1.若对进行积分,那么此时可以把当成已知的数,即可得

此时可化为【公众号:岩宝数学考研】

2.若对进行积分,那么此时可以把

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值