斐波那契尾递归函数java_漫谈递归:从斐波那契开始了解尾递归

尾递归(tail recursive),看名字就知道是某种形式的递归。简单的说递归就是函数自己调用自己。那尾递归和递归之间的差别就只能体现在参数上了。

尾递归wiki解释如下:

尾部递归是一种编程技巧。递归函数是指一些会在函数内调用自己的函数,如果在递归函数中,递归调用返回的结果总被直接返回,则称为尾部递归。尾部递归的函数有助将算法转化成函数编程语言,而且从编译器角度来说,亦容易优化成为普通循环。这是因为从电脑的基本面来说,所有的循环都是利用重复移跳到代码的开头来实现的。如果有尾部归递,就只需要叠套一个堆栈,因为电脑只需要将函数的参数改变再重新调用一次。利用尾部递归最主要的目的是要优化,例如在Scheme语言中,明确规定必须针对尾部递归作优化。可见尾部递归的作用,是非常依赖于具体实现的。

我们还是从简单的斐波那契开始了解尾递归吧。

用普通的递归计算Fibonacci数列:

#include "stdio.h"

#include "math.h"

int factorial(int n);

int main(void)

{

int i, n, rs;

printf("请输入斐波那契数n:");

scanf("%d",&n);

rs = factorial(n);

printf("%d \n", rs);

return 0;

}

// 递归

int factorial(int n)

{

if(n <= 2)

{

return 1;

}

else

{

return factorial(n-1) + factorial(n-2);

}

}

程序员运行结果如下:

请输入斐波那契数n:20

6765

Process returned 0 (0x0) execution time : 3.502 s

Press any key to continue.

在i5的CPU下也要花费 3.502 秒的时间。

下面我们看看如何用尾递归实现斐波那契数。

#include "stdio.h"

#include "math.h"

int factorial(int n);

int main(void)

{

int i, n, rs;

printf("请输入斐波那契数n:");

scanf("%d",&n);

rs = factorial_tail(n, 1, 1);

printf("%d ", rs);

return 0;

}

int factorial_tail(int n,int acc1,int acc2)

{

if (n < 2)

{

return acc1;

}

else

{

return factorial_tail(n-1,acc2,acc1+acc2);

}

}

程序员运行结果如下:

请输入斐波那契数n:20

6765

Process returned 0 (0x0) execution time : 1.460 s

Press any key to continue.

快了一倍有多。当然这是不完全统计,有兴趣的话可以自行计算大规模的值,这里只是介绍尾递归而已。

我们可以打印一下程序的执行过程,函数加入下面的打印语句:

int factorial_tail(int n,int acc1,int acc2)

{

if (n < 2)

{

return acc1;

}

else

{

printf("factorial_tail(%d, %d, %d) \n",n-1,acc2,acc1+acc2);

return factorial_tail(n-1,acc2,acc1+acc2);

}

}

程序运行结果:

请输入斐波那契数n:10

factorial_tail(9, 1, 2)

factorial_tail(8, 2, 3)

factorial_tail(7, 3, 5)

factorial_tail(6, 5, 8)

factorial_tail(5, 8, 13)

factorial_tail(4, 13, 21)

factorial_tail(3, 21, 34)

factorial_tail(2, 34, 55)

factorial_tail(1, 55, 89)

55

Process returned 0 (0x0) execution time : 1.393 s

Press any key to continue.

从上面的调试就可以很清晰地看出尾递归的计算过程了。acc1就是第n个数,而acc2就是第n与第n+1个数的和,这就是我们前面讲到的“迭代”的精髓,计算结果参与到下一次的计算,从而减少很多重复计算量。

fibonacci(n-1,acc2,acc1+acc2)真是神来之笔,原本朴素的递归产生的栈的层次像二叉树一样,以指数级增长,但是现在栈的层次却像是数组,变成线性增长了,实在是奇妙,总结起来也很简单,原本栈是先扩展开,然后边收拢边计算结果,现在却变成在调用自身的同时通过参数来计算。

小结

尾递归的本质是:将单次计算的结果缓存起来,传递给下次调用,相当于自动累积。

在Java等命令式语言中,尾递归使用非常少见,因为我们可以直接用循环解决。而在函数式语言中,尾递归却是一种神器,要实现循环就靠它了。

很多人可能会有疑问,为什么尾递归也是递归,却不会造成栈溢出呢?因为编译器通常都会对尾递归进行优化。编译器会发现根本没有必要存储栈信息了,因而会在函数尾直接清空相关的栈。

延伸阅读

此文章所在专题列表如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值