多块英伟达K80显卡linux安装,ubuntu14.04下NVIDIA Tesla K80 、GTX1080顯卡驅動以及Tensorflow、Python的安裝教程...

目錄

1 安裝NVIDIA Tesla K80顯卡驅動

1.1 准備工作

1.1.1 證明存在GPU

lspci | grep -i nvidia

結果例示

01:00.0 VGA compatible controller: NVIDIA Corporation GK208 [GeForce GT 730] (rev a1)

01:00.1 Audio device: NVIDIA Corporation GK208 HDMI/DP Audio Controller (rev a1)

02:00.0 3D controller: NVIDIA Corporation GK110BGL [Tesla K40c] (rev a1)

1.1.2 驗證Linux版本是否支持x86_64

uname -m && cat /etc/*release

結果例示

x86_64

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION=”Ubuntu 14.04.5 LTS”

NAME=”Ubuntu”

VERSION=”14.04.5 LTS, Trusty Tahr”

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME=”Ubuntu 14.04.5 LTS”

VERSION_ID=”14.04”

HOME_URL=”http://www.ubuntu.com/”

SUPPORT_URL=”http://help.ubuntu.com/”

BUG_REPORT_URL=”http://bugs.launchpad.net/ubuntu/”

1.1.3 看gcc是否安裝

gcc --version

結果例示

gcc (Ubuntu 4.8.4-2ubuntu1~14.04.3) 4.8.4

Copyright (C) 2013 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1.1.4 看是否存在已安裝的nvidia驅動,如果存在應先卸載

lsmod | grep nvidia

1.2 屏蔽系統自帶驅動nouveau

屏蔽原因:由於nvidia驅動和Ubuntu自帶的nouveau顯卡驅動沖突,所以安裝了nvidia官方驅動之后,reboot系統,可能會卡在登陸頁面。

1.2.1 看是否存在已安裝的草根驅動nouveau

lsmod | grep nouveau

結果例示

nouveau 1474560 4 ttm 94208 1

nouveau drm_kms_helper 143360 2 i915_bpo,nouveau drm

360448 8 ttm,i915_bpo,drm_kms_helper,nouveau mxm_wmi

16384 1 nouveau i2c_algo_bit 16384 2 i915_bpo,nouveau wmi

20480 3 mxm_wmi,nouveau,asus_wmi video 40960 3

i915_bpo,nouveau,asus_wmi

1.2.2 關閉圖形界面X-Win界面

sudo stop lightdm

1.2.3 進入黑名單目錄

cd /etc/modprobe.d/

1.2.4 創建blacklist-nouveau.conf並添加內容

sudo vi blacklist-nouveau.conf

【說明:執行完sudo vi blacklist-nouveau.conf后按任意鍵進入編輯狀態,將下面代碼內容逐行復制到文件中。編輯完成后,按ESC鍵 退出編輯狀態,輸入:wq完成保存。】

blacklist nouveau options nouveau modeset=0

1.2.5 查看blacklist-nouveau.conf內容是否添加成功

sudo cat blacklist-nouveau.conf

1.2.6 重啟

sudo shutdown -r now

1.2.7查看驅動是否還存在

lsmod | grep nouveau

【說明:如果什么反應都沒有就是已經成功了】

1.3 下載NVIDIA Tesla K80顯卡驅動並安裝

1.3.1 命令行下載

wget http://cn.download.nvidia.com/tesla/375.51/nvidia-driver-local-repo-ubuntu1404_375.51-1_amd64.deb

1.3.2 安裝

sudo dpkg -i nvidia-driver-local-repo-ubuntu1404_375.51-1_amd64.deb

sudo apt-get update

sudo apt-get install cuda-drivers

1.3.3 重啟

sudo reboot

1.3.4 查看驅動

lsmod | grep nvidia

結果例示

nvidia_uvm 724992 0

nvidia_drm 45056 2

nvidia_modeset 765952 4 nvidia_drm

nvidia 11489280 81 nvidia_modeset,nvidia_uvm

drm_kms_helper 143360 2 i915_bpo,nvidia_drm

drm 360448 6 i915_bpo,drm_kms_helper,nvidia_drm

1.3.5 檢查安裝情況

nvidia-smi

結果例示

a43602063188a71e8bf1a1432627378c.jpe

2 安裝GTX1080顯卡驅動

2.1 安裝 Nvidia 驅動 367.27

sudo add-apt-repository ppa:graphics-drivers/ppa

第一次運行出現如下的警告

Fresh drivers from upstream, currently shipping Nvidia.

Current Status

We currently recommend: nvidia−361nvidia-361, Nvidia’s current long lived branch.

For GeForce 8 and 9 series GPUs use nvidia−340nvidia-340

For GeForce 6 and 7 series GPUs use nvidia−304nvidia-304

What we’re working on right now:

– Normal driver updates– Investigating how to bring this goodness to distro on a cadence.

WARNINGS:

This PPA is currently in testing, you should be experienced with packaging before you dive in here. Give us a few days to sort out the kinks.

Volunteers welcome! See also: https://github.com/mamarley/nvidia-graphics-drivers/

http://www.ubuntu.com/download/desktop/contribute

更多信息: https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa

2.2 按回車繼續或者 Ctrl+c 取消添加

回車后繼續

sudo apt-get update

sudo apt-get install nvidia-375

sudo apt-get install mesa-common-dev

sudo apt-get install freeglut3-dev

2.3 讓GTX1080顯卡驅動生效

sudo shutdown -r now

2.4 檢查安裝情況

nvidia-smi

3 安裝Tensorflow (pip安裝方式)

3.1 首先安裝pip

sudo apt-get install python-pip python-dev

3.2 利用pip安裝tensorflow

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl

sudo pip install --upgrade $TF_BINARY_URL

3.3 如果需要更新tensorflow

sudo pip install -U tensorflow

4 安裝Python

4.1 安裝python-numpy

sudo apt-get install python-numpy

4.2 安裝python-scipy

sudo apt-get install python-scipy

4.3 安裝 python-matplotlib

sudo apt-get install python-matplotlib

5 測試

5.1 檢驗tensorflow是否安裝成功

通過下面一段代碼來測試tensorflow是否安裝成功

python

import tensorflow as tf

hello = tf.constant('Hello, TensorFlow!')

sess = tf.Session()

print(sess.run(hello))

Hello, TensorFlow!

a = tf.constant(10)

b = tf.constant(32)

print(sess.run(a + b))

42

5.2 Tensorflow MNIST 數據集測試代碼入門

測試代碼

git clone https://github.com/yhlleo/mnist.git Mnist_data

pwd //列出Mnist_data的路徑

cd xxxxxx //xxxxxx為Mnist_data的路徑

python mnist_softmax.py //MNIST機器學習入門

python mnist_deep.py //深入MNIST

python fully_connected_feed.py //TensorFlow運作方式入門

python mnist_with_summaries.py //Tensorboard訓練過程可視化

6 其他常用命令

6.1 查看電腦顯卡信息命令

lspci | grep VGA

6.2 打開終端,先刪除舊的驅動

sudo apt-get purge nvidia*

6.3 查看ubuntu版本

cat /etc/issue

6.4 查看系統是32位還是64位方法

getconf LONG_BIT //返回64則是64位

6.5 從github上將該倉庫clone下來

最簡單直接的命令

git clone xxx.git // 例如:git clone https://github.com/yhlleo/mnist.git

如果想clone到指定目錄

git clone xxx.git 指定目錄 // 例如:git clone https://github.com/yhlleo/mnist.git Mnist_data

6.6 Ubuntu下常用命令:

apt-get是可以直接使用的,格式為

sudo apt-get install/delete package

sudo apt-get -f install //修復安裝

sudo apt-get dist-upgrade //升級系統

sudo apt-get upgrade //更新已安裝的包

apt-get source package //下載該包的源代碼

sudo apt-get build-dep package //安裝相關的編譯環境

sudo apt-get clean && sudo apt-get autoclean //清理無用的包

pip需要安裝才能使用,配合virtualenvwrapper會錦上添花。安裝過程如下 (適用Ubuntu 10.10及以上版本)使用格式為:

pip install package。

sudo apt-get install python-pip python-dev build-essential

sudo pip install --upgrade pip

sudo pip install --upgrade virtualenv

6.7 刪除軟件

方法一:如果你知道要刪除軟件的具體名稱,可以使用

sudo apt-get remove --purge 軟件名稱

sudo apt-get autoremove --purge 軟件名稱

方法二:如果不知道要刪除軟件的具體名稱,可以使用

dpkg --get-selections | grep ‘軟件相關名稱’

sudo apt-get purge 一個帶core的package //如果沒有帶core的package,則視情況而定

6.8 清理殘留數據

dpkg -l |grep ^rc|awk '{print $2}' |sudo xargs dpkg -P

<think>好的,我现在需要帮用户解决Tesla K80显卡驱动安装问题。首先,用户提供了几个引用资料,我得仔细看看这些内容。引用1提到使用.run文件安装驱动,并且加上了--no-opengl-files参数,这样可以避免图形界面冲突。引用2详细说明了下载.run文件、修改权限、用root用户安装,以及安装失败时的日志问题。引用3给了一个具体的驱动下载链接,而引用4提到了Ubuntu 14.04下的安装和额外资源链接。 用户的主要需求是安装Tesla K80的驱动,可能还涉及到下载步骤。我需要整合这些信息,确保步骤正确。首先,确认用户的操作系统,但用户没有明确说明,所以可能需要给出通用的Linux步骤。根据引用2,用户需要以root权限运行安装程序,并且下载对应的.run文件。引用3的链接可能已经过时,需要提醒用户去官网查找最新驱动。另外,安装时的常见问题如权限不足、依赖缺失等,需要提到解决方法,比如使用sudo命令,安装kernel headers等。 还要注意用户是否可能遇到图形界面冲突的问题,这时候需要按照引用1的建议添加--no-opengl-files参数。最后,验证安装是否成功的方法,比如nvidia-smi命令。生成的相关问题可能需要包括CUDA安装、驱动兼容性、多卡配置等常见后续问题。确保回答结构清晰,步骤详细,同时引用正确的来源,帮助用户顺利完成安装。</think>### Tesla K80 显卡驱动安装教程 #### **步骤 1:下载驱动文件** 1. 访问英伟达官网驱动下载页面:[NVIDIA 驱动下载](https://www.nvidia.cn/Download/index.aspx?lang=cn) 选择产品类型为${\text{Tesla}}$、产品系列为${\text{Tesla K-Series}}$、操作系统版本和CUDA版本(如无特殊需求,可选默认),点击“搜索”后下载对应的.run文件[^3]。 2. 通过命令行下载(示例版本号以实际为准): ```bash wget http://us.download.nvidia.com/tesla/450.51.06/NVIDIA-Linux-x86_64-450.51.06.run ``` --- #### **步骤 2:准备安装环境** 1. **赋予执行权限**: ```bash chmod +x NVIDIA-Linux-x86_64-*.run ``` 2. **关闭图形界面**(避免冲突): ```bash sudo systemctl stop gdm # 适用于GNOME桌面环境 ``` 3. **安装依赖项**(Ubuntu/Debian): ```bash sudo apt install build-essential linux-headers-$(uname -r) ``` --- #### **步骤 3:执行安装** 1. **以root权限运行安装程序**: ```bash sudo ./NVIDIA-Linux-x86_64-*.run --no-opengl-files # 跳过OpenGL文件避免图形界面冲突[^1] ``` 2. **安装过程中需注意**: - 选择“Yes”安装DKMS(动态内核模块支持) - 若提示“X server is running”,需强制关闭后重试 - 日志文件权限问题可通过`sudo touch /var/log/nvidia-installer.log && sudo chmod 666 /var/log/nvidia-installer.log`解决[^2] --- #### **步骤 4:验证安装** ```bash nvidia-smi # 输出应包含Tesla K80显卡信息 ``` 示例输出: ``` +-----------------------------------------------------------------------------+ | NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla K80
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值