释放pytorch占用的gpu显存_pytorch 模型训练时多卡负载不均衡(GPU的0卡显存过高)解决办法(简单有效)...

本文介绍了如何解决PyTorch模型训练时GPU显存占用不均衡的问题,特别是在0卡显存过高的情况下。通过自定义的BalancedDataParallel类,调整0卡的batch_size,实现GPU显存的均衡使用,从而避免out of memory并提高batch_size。这种方法尤其适用于多GPU训练场景。
摘要由CSDN通过智能技术生成

本文主要解决pytorch在进行模型训练时出现GPU的0卡占用显存比其他卡要多的问题。

如下图所示:本机GPU卡为TITAN RTX,显存24220M,batch_size = 9,用了三张卡。第0卡显存占用24207M,这时仅仅是刚开始运行,数据只是少量的移到显卡上,如果数据在多点,0卡的显存肯定撑爆。出现0卡显存更高的原因:网络在反向传播的时候,计算loss的梯度默认都在0卡上计算。因此会比其他显卡多用一些显存,具体多用多少,主要还要看网络的结构。

f6ddfb62db2f70a9e5e35346dd4e55eb.png

因此,为了防止训练由于 out of memory 而中断。比较笨的办法是将batch_size设为6,即每张卡放2条数据。

batch_size = 6时,其他不变,如下图所示

a30b766c77654a7cac02e7eba51dae92.png

有没有发现问题?显存只用了1,2卡的显存只用了16G不到。就因为0卡可能会超那么一点点显存,而牺牲了batch_size。

那么没有更优雅的方法呢?答案是肯定的。那就是借用下transformer-xl中用到的 BalancedDataParallel类。代码如下(代码出处)&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值