rapidminer员工离职分析_数据分析:员工离职预测分析

本文利用数据分析工具,如Excel和Tableau,对阿里天池提供的员工数据进行探索,揭示了影响离职率的关键因素,包括年轻员工、男性、单身、低月收入、频繁加班等特征。通过对各变量的深入分析,发现新员工离职率较高,尤其是工作年限短、工作满意度低、工作与生活平衡不佳的员工。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文作者用数据分析法对一家公司的员工离职原因展开了分析预测,与大家分享。

9c110c9f1501579980a98948a013e27a.png

一、概述

  1. 项目数据来源:https://tianchi.aliyun.com/dataset/dataDetail?dataId=4574
  2. 数据分析工具:本次案在例中,我所需要做的便是通过已有的信息进行预测员工未来的动向,即判断该员工未来是否会离职。其中训练数据主要包括1100条记录,31个字段。此次数据分析所用到的工具有:excel,tableau

二、数据分析基本步骤

(1)明确业务需求;

(2)数据采集 ;

(3)数据处理

(4)数据探索分析(数据的描述性分析);

(5)综合数据分析;

1. 明确业务需求

面对公司留不住人,人员流动大等问题,本文对取自于“阿里天池”关于职工数据集的数据进行分析,挖掘出哪些数据对于离职率有贡献,预测哪些人最后会流动。

2. 数据采集

项目数据集取自“阿里天池”,相关网址链接请参看概述。其中训练数据主要包括1100条记录,31个字段。主要字段说明如下:

(1)Age:员工年龄(1表示已经离职,2表示未离职,这是目标预测值)

(2)Attrition:员工是否已经离职(Non-Travel表示不出差,Travel_Rarely表示不经常出差,Travel_Frequently表示经常出差)

(3)BusinessTravel:商务差旅频率(Sales表示销售部,Research & Development表示研发部,Human Resources表示人力资源部)

(4)Department:员工所在部门(Sales表示销售部,Research & Development表示研发部,Human Resources表示人力资源部)

(5)DistanceFromHome:公司跟家庭住址的距离,(从1到29,1表示最近,29表示最远)

(6)Education:员工的教育程度(从1到5,5表示教育程度最高)

(7)EducationField:员工所学习的专业领域(Life Sciences表示生命科学,Medical表示医疗,Marketing表示市场营销,Technical Degree表示技术学位,Human Reso

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值