lppl模型 matlab,【数学】用LPPL模型对2015年股灾回测

本文介绍了使用LPPL(Log-Power Law Pre-Crisis Patterns)模型对2015年股灾进行回测的情况。LPPL模型用于描述市场泡沫和崩溃现象,通过模拟发现模型在预测股灾发生时间方面存在一定的误差。文章还探讨了模型的物理背景和数学公式,并提到了其在预测深圳房价上的应用,强调了参数估计的挑战和预测精度的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:雪球App,作者: 阿饭同学,(https://xueqiu.com/8584666563/77770423)

前言

挺无聊的一个话题,预测才有意思,但是现在用后视镜看问题。

本来想做的事情,是考虑人在做一些理性选择的时候,一些特别理性的事情。比如方差在选择中的应用,正期望值或者负期望下的行为。 但是显然,这个难度很大。

刚好有人提到用lppl模型来做下预测,人性太复杂,用一种函数来描述,这个函数还要拟合过程,这难度就有点大。

LPPL是什么?

免得有朋友问我LPPL是干啥用的,我从网上摘抄了一些定义:

假想我们处于这样的一个市场中:资产没有派息、银行利率为零、市场极度厌恶风险,并且市场有着充足的流动性。显然,在这个市场中的金融资产没有任何价值,也就是其基础价值为零。在这样的框架内,市场中出现两类投资者,如上文所说,一类是理性投资者,一类是非理性的噪声投资者。后者具有羊群效应,使得金融资产价格偏离其基础价值,在没有足够的做空机制下,该结果导致理性投资者也不得不跟随噪声投资者的行为,通过享受泡沫来获得收益。最终当趋势达到某一临界值时,大量投资者没有足够的头寸维持该趋势,于是手中的卖单导致了市场的崩盘。

运算和结果

用2014年1月1日的数据开始模拟,LPPL模型算出来的优化算法波动比较大(有一定的误差率,我们常用GA算法,每次运算可能都有偏差),调整参数带来的差异就更加大了。

股灾时间是 2016年6月15日

(Cri

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值