来源:雪球App,作者: 阿饭同学,(https://xueqiu.com/8584666563/77770423)
前言
挺无聊的一个话题,预测才有意思,但是现在用后视镜看问题。
本来想做的事情,是考虑人在做一些理性选择的时候,一些特别理性的事情。比如方差在选择中的应用,正期望值或者负期望下的行为。 但是显然,这个难度很大。
刚好有人提到用lppl模型来做下预测,人性太复杂,用一种函数来描述,这个函数还要拟合过程,这难度就有点大。
LPPL是什么?
免得有朋友问我LPPL是干啥用的,我从网上摘抄了一些定义:
假想我们处于这样的一个市场中:资产没有派息、银行利率为零、市场极度厌恶风险,并且市场有着充足的流动性。显然,在这个市场中的金融资产没有任何价值,也就是其基础价值为零。在这样的框架内,市场中出现两类投资者,如上文所说,一类是理性投资者,一类是非理性的噪声投资者。后者具有羊群效应,使得金融资产价格偏离其基础价值,在没有足够的做空机制下,该结果导致理性投资者也不得不跟随噪声投资者的行为,通过享受泡沫来获得收益。最终当趋势达到某一临界值时,大量投资者没有足够的头寸维持该趋势,于是手中的卖单导致了市场的崩盘。
运算和结果
用2014年1月1日的数据开始模拟,LPPL模型算出来的优化算法波动比较大(有一定的误差率,我们常用GA算法,每次运算可能都有偏差),调整参数带来的差异就更加大了。
股灾时间是 2016年6月15日
(Cri