自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

yanglamei1962的博客

编程使我快乐

  • 博客(168)
  • 收藏
  • 关注

原创 基于OpenCV与Mediapipe的实时手势识别系统源代码+模型+演示视频+项目文档

本文介绍了一个基于OpenCV和MediaPipe的手势识别系统,使用Python实现。系统包含手势识别和手指轨迹识别功能,采用TFLite模型。项目提供了完整的训练数据、Jupyter Notebook训练脚本和演示程序app.py。用户可通过摄像头实时演示,支持自定义手势训练和数据收集。系统要求包括MediaPipe 0.8.1、OpenCV 3.4.2+和TensorFlow 2.3.0+等依赖项。手势识别通过关键点分类实现,手指轨迹识别则基于坐标历史记录。训练数据可扩展,模型结构在文档中有详细说明。

2025-07-31 17:26:07 782

原创 多平台自动签到助手-基于SpringBoot的定时薅京东、掘金羊毛、阿里网盘自动签到的应用docker-compose一键编排部署

京东/掘金/阿里网盘自动签到服务 基于SpringBoot开发的自动化签到服务,支持京东、掘金和阿里网盘的定时签到功能。主要特点包括: 掘金任务:支持等级成长、沸点互动等任务(部分功能受限) 京东签到:自动签到及京豆查询 阿里网盘:自动签到及奖励领取 消息通知:支持Server酱和PushDeer推送任务结果 便捷部署:提供docker compose一键部署方案 服务通过定时任务自动执行各类签到操作,并实时推送执行结果。用户只需配置好相关账号信息,即可轻松实现自动化签到功能。

2025-07-27 10:00:35 813

原创 基于 Django 开发的智联招聘数据可视化分析系统源代码+使用说明,用于分析和展示招聘市场的数据趋势和洞察

这是一个基于 Django 框架开发的智联招聘数据可视化分析系统,用于分析和展示招聘市场的数据趋势和洞察。

2025-06-24 17:25:01 315

原创 毕业设计基于Springboot + Vue的二手商品交易与社区互动平台源代码+数据库+部署说明

项目名称:二手交易平台项目类型:基于Springboot + Vue的二手商品交易与社区互动平台(前后端分离)目标用户管理员:负责平台整体运营和管理的人员。普通用户:使用平台进行商品买卖、发布帖子、求购等操作的注册用户。功能模块用户注册/登录首页:搜索商品、浏览分类二手商品、发布商品、发布求助帖社区广场:浏览不同圈子的帖子,查看帖子详情,可评论求购专区:浏览用户发布的求购帖,可评论系统公告:查看管理员发布的系统公告留言反馈:填写反馈信息给管理员。

2025-06-03 16:36:21 766

原创 毕业设计基于vue+Springboot的固定资产管理系统源代码+数据库+详细说明

项目名称:固定资产管理系统项目类型:资产管理和预约审核系统目标用户管理员:负责平台整体运营和管理的人员。员工:使用平台进行资产查看、申请、领用及报修等操作的普通用户。功能模块用户注册/登录个人信息管理(包括修改密码)系统首页(包含公告和统计图表)资产分类管理资产信息管理资产入库审核资产领用审核资产报修审核部门信息管理公告信息发布与管理管理员信息管理员工信息管理。

2025-06-03 15:23:47 944

原创 毕业设计基于Vue+SpringBoot的智慧医院就诊系统源代码+数据库+详细说明,实现了症状自查、结构化电子病历生成及临床建议辅助等功能

智慧医院就诊系统是一套全面的信息化管理解决方案,通过Vue+SpringBoot架构实现医院服务的数字化与智能化。系统核心功能包括智能问诊(集成DeepSeek大语言模型)、电子病历自动生成、医生工作台、预约挂号、健康数据分析等,覆盖患者、医生和管理员三类用户需求。患者可通过AI自查症状并获取挂号推荐,医生可高效管理诊疗流程,管理员可监控系统运行并生成运营报表。系统采用MySQL+Redis技术栈,支持病历结构化、处方管理和诊后随访等功能,显著提升诊疗效率与患者体验。

2025-05-28 17:02:58 891

原创 毕业设计基于springboot开发的轻量级单体架构购物商城网站源代码+数据库+详细文档

轻量级购物商城系统摘要本项目基于SpringBoot开发了一个单体架构的购物商城系统,包含用户、商户和后台三大模块。用户模块提供商品浏览、搜索、下单、微信支付等功能;商户模块支持商品管理、订单查看和收益统计;后台模块具备RBAC权限管理、商户管理、广告设置和消息群发功能。系统采用MySQL+Redis缓存架构,结合Elasticsearch实现商品搜索,使用RabbitMQ处理异步消息。项目提供完整的API文档和在线演示环境,支持Docker部署。技术栈:SpringBoot 2.3.5、MySQL 5

2025-05-28 11:35:31 658

原创 毕业设计基于Spring Boot 3.4.1和Vue3开发的博物馆文化创意产品在线销售系统源代码+数据库+详细文档

一个专注于博物馆文化创意产品在线销售系统。本项目采用前后端分离架构,基于Spring Boot 3.4.1和Vue3开发,旨在为博物馆文创产品提供一个专业、高效、用户友好的线上销售渠道。

2025-05-05 09:52:45 1100

原创 用Python画一个超酷超漂亮的老虎源代码+详细代码注释,Python画虎年吉祥物源代码,基于turtle实现

用Python画一个超酷超漂亮的老虎源代码+详细代码注释,Python画虎年吉祥物源代码,基于turtle实现。

2025-04-12 21:30:20 237

原创 基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+项目文档

​ 本文主要讲解了Boss直聘网站数据爬取分析与可视化的实现流程及代码编写。目前项目任然还有很多的不足和考虑不全面的地方,当然如果您有疑问的地方和更好的优化建议也请给我留言,我一定尽力的去回复和改进这些地方。

2025-04-12 20:42:53 1903

原创 基于卷积神经网络(CNN)实现的猫狗分类系统源代码+数据集+详细项目文档

这是一个基于卷积神经网络(CNN)实现的猫狗分类系统。通过深度学习,模型能够识别图像中的猫或狗,输出其类别及概率。该项目主要分为数据预处理、模型构建、训练和评估四个部分。

2025-03-28 15:20:50 911

原创 基于Python+Django+Vue的高校毕业租房预约推荐系统设计与实现源代码+数据库初始化+使用说明

前台功能包括:首页、详情页、订单、用户中心、分类管理,地区管理。后台功能包括:首页、轮播图管理、管理员、卖家管理、买家管理、景区管理、订单管理。

2025-02-21 15:40:51 239

原创 基于Python+Django+Vue的旅游景区推荐系统系统设计与实现源代码+数据库+使用说明

前台功能包括:首页、详情页、订单、用户中心。后台功能包括:首页、轮播图管理、管理员、卖家管理、买家管理、景区管理、订单管理。

2025-02-21 11:22:03 489

原创 毕业设计基于Python+Django+Vue+Mysql前后端分离的图书管理系统源代码+数据库+项目文档

1、pycharm创建django项目(使用虚拟环境,避免项目干扰)(5):添加djangorestframework全局处理类。(1):添加跨域和djangorestframework。8、urls中设置前端文件图片上传地址和访问地址。4、安装依赖(有默认前后端分离所需依赖)(2):添加跨域中间件和注释csrf。(4):添加跨域请求头和请求地址相关。9、views 设置 图片上传接口。6、设置settings相关内容。14、创建Serializer。(6):添加媒体上传文件配置。

2025-02-20 17:29:49 629

原创 javaweb大作业基于Spring Boot 3 + Vue + Element Plus实现的浙江绍兴展示网站源代码+数据库+项目文档,含美食展示、文化展示、景点展示及用户认证模块

这是一个专注于展示绍兴地区特色与魅力的全栈应用。项目采用现代化的前后端分离架构,就像绍兴的新与旧完美融合一样,我们的技术选型也是新潮与稳重的黄金组合!💼 后端:强大的 Spring Boot 3 框架🎨 前端:灵活的 Vue.js + Element Plus。

2025-02-05 17:15:54 1229

原创 基于Java+MySQL+JDBC+JavaSwing的快递打印单生成管理系统源代码+数据库

完整源代码下载地址:基于Java+MySQL+JDBC+JavaSwing的快递打印单生成管理系统源代码+数据库

2025-02-04 16:32:11 454

原创 基于servlet+JSP的网上花店鲜花售卖商店源代码+数据库

用户管理员。

2025-02-04 16:23:16 164

原创 基于SpringBoot+Mysql的新闻网站源代码+数据库

完整源代码下载地址:基于SpringBoot+Mysql的新闻网站源代码+数据库

2025-02-04 16:19:48 243

原创 数据库课程设计基于Java+MySQL+JDBC+JavaSwing的停车场管理系统源代码+数据库,进出车辆登记,车位管理

主界面:左上角有LOGO图片,以及欢迎语,左边按钮可以操作车辆的进出操作。可看到剩余车位数,可查询某个车位,表格一览展示了车位的占用情况,绿色表示空闲的座位,黄色表示使用中的座位。下方可删除和新增车位。车位使用操作记录:在这个面板可以看到使用记录,车辆出场后会根据进出的时间差计算相应的停车费用,方便后期需要可溯源。用户注册:提供用户注册功能,输入用户名(如果已被占用,需要换一个),密码,姓名,操作有相应的提示。车辆信息更正:对于已经进场的车辆,如果信息有误,可以进行修改的操作。

2025-02-04 16:02:53 506

原创 数据库课程设计基于Java+MySQL+JDBC+JavaSwing的学生成绩管理系统源代码+数据库

完整代码下载地址:学生成绩管理系统源代码+数据库

2025-02-04 15:47:47 327

原创 面向对象课程设计基于Java+MySQL+JDBC+JavaSwing的银行ATM存取款机系统源代码+数据库+使用说明

用户可以查看银行账户的收支明细,包括每笔交易的时间、金额和类型等信息。用户可以修改银行账户的登录密码。密码修改通常需要进行身份验证,例如输入原始密码或提供其他安全信息。从银行账户中取出一定金额的现金。可快捷输入 ,点击相应的数字,也可以自定义金额。以上展示部分效果,具体可以将项目工程克隆下来,本地运行看下实际效果。将一定金额的资金从自己的银行账户转移到他人的银行账户中。需要登记姓名,密码,身份证号,开户卡号自动随机生成。将一定金额的现金存入银行账户中。查询银行账户中的余额情况。

2025-02-04 15:31:16 360

原创 毕业设计基于SpringBoot+Vue的大学生体质检测管理系统源代码+数据库

基于SpringBoot+Vue的大学生体质检测管理系统

2025-02-04 15:15:23 224

原创 基于SpringBoot+MySQL的图书借阅管理系统源代码+数据库

完整代码下载地址:基于SpringBoot+MySQL的图书借阅管理系统源代码+数据库

2025-02-04 14:58:00 250

原创 数据库课程设计使用Java+JDBC+MySQL+Swing实现的会议预约管理系统源代码+数据库

GBK用户端管理员端。

2025-02-04 13:53:53 392

原创 期末数据库课程设计基于Java+MySQL+JDBC+JavaSwing实现的图书进销管理系统源代码+数据库

期末数据库课程设计,直接将数据库文件导入就可以快速建表。

2025-02-04 13:43:19 352

原创 用Python画一个蛇年吉祥物源代码,超漂亮超萌的蛇年吉祥物源代码,含详细代码解释,基于turtle实现

用Python画一个蛇年吉祥物源代码,超漂亮超萌的蛇年吉祥物源代码,含详细代码解释,基于turtle实现。

2025-01-26 14:56:17 922

原创 用Python画一个超酷超漂亮的中国龙源代码+详细代码注释,Python画龙年吉祥物源代码,基于turtle实现

用Python画一个超酷超漂亮的中国龙源代码+详细代码注释,Python画龙年吉祥物源代码,基于turtle实现。

2025-01-26 14:49:07 607

原创 Python基于卷积神经网络实现的人脸表情识别系统源代码+数据集+预训练模型+使用说明,含GUI界面

使用卷积神经网络构建整个系统,在尝试了Gabor、LBP等传统人脸特征提取方式基础上,深度模型效果显著。在FER2013、JAFFE和CK+三个表情识别数据集上进行模型评估。

2024-12-18 16:53:30 1150

原创 python课程设计基于Django + vue实现的运动商城系统源代码+数据库+详细项目文档

staticAPI接口文档.md环境要求:MySQL 8、python3.11、django4.2、pymysql。

2024-12-10 17:06:32 1289

原创 基于Python django的商城系统源代码+数据库+使用说明,使用简单,支持商品多规格配置,支持余额支付、支付宝支付以及微信

本项目支持前后端分离开发,完全采用django-restframework开发,PC端采用drf提供的TemplateHTMLRenderer渲染器对接口视图继承并渲染,真正做到了,一套接口PC和移动端公用的效果!

2024-10-29 20:40:30 703

原创 基于Django+Celery+Acunetix的漏洞扫描器源代码+数据库+安装使用说明,实现了漏洞扫描、端口扫描和后台扫描等功能

1.此扫描器基于Python3.8.0和Django2.2开发,是一款漏洞扫描器,借助Celery插件实现了异步的端口扫描和后台扫描,而漏洞扫描则使用了著名漏洞扫描工具AWVS的API实现。2.本项目的前端界面在项目H+的基础上开发。

2024-10-29 19:54:09 877 1

原创 基于GIKT深度知识追踪模型的习题推荐系统源代码+数据库+使用说明,后端采用flask,前端采用vue

基于GIKT深度知识追踪模型的习题推荐系统。

2024-09-19 16:54:46 1708 1

原创 基于jupyter notebook + joint-spider爬虫数据的成都二手房数据可视化分析项目源代码+详细使用说明

相关参数详情见百度地图开发者文档。

2024-09-17 13:53:57 1860 5

原创 基于android studio开发的仿QQ聊天软件源代码+数据库+实验报告

服务器端主要的实现的功能是用户注册、用于登录账号验证、消息转发、好友添加、用户数据更新, 用户信息查询、存储临时消息到数据库服务器。通过哈希表(hashmap)存储来自每一个向客户端的发送线程和消息监听进程,方便查询和管理。发送给好友的消息是以消息对列的形式发送出去,而对于登录,注册,查询,更改用户信息的对及时性要求高的消息则直接发送回馈消息不经过消息对列那一步。服务端用idea 打开需要修改mysql数据库密码在dbcpconfig.properties 配置文件中。

2024-09-14 16:58:01 639

原创 基于Android studio的五子棋源代码+后台+数据库,安卓课程大作业+使用教程

基于Android studio的五子棋源代码+后台+数据库,安卓课程大作业+使用教程。

2024-09-09 15:45:55 444

原创 人机交互项目基于openCV的手势识别控制的打地鼠游戏源代码+数据+项目报告+演示视频,代码有详细注释

相比传统的交互方式,手势识别的表现中规中矩。优点在于不会断触失灵,但其使用体验仍有巨大的进步空间。

2024-08-09 10:52:42 772

原创 Java课程大作业基于JavaFX+MySQL的学生管理系统源代码+数据库+详细文档,具有成绩数据可视化分析及自动生成简历功能

主要有五个界面,分别是初始界面、登陆界面、注册界面、学生主界面、教师主界面。进入系统后进入初始界面,可选择登录或注册。如果已经有账号,选择登录,在登录界面,输入姓名和密码,根据账号的身份跳转到学生主界面或教师主界面。如果没有账号,选择注册,在注册界面进行注册,注册后跳转个人页面。在学生主界面中显示学生的基本信息,如姓名、班级、身份、个人简介、各科成绩和排名、获奖信息。其中个人简介、各科成绩和排名、获奖信息可以更改。如果学生有需要,可以下载有关个人信息的txt或md格式文件,也就是一个简易的简历。

2024-06-25 16:52:07 1118

原创 程序设计思维课程大作业用python flask实现的网页版python编辑器项目源码,用CodeMirror来实现代码高亮

程序设计思维课程大作业用python flask与html实现在线python网页编辑利用CodeMirror来实现代码高亮实现了代码自动联想补全能够根据python代码生成流程图。

2023-12-31 09:00:00 1519 1

原创 编译原理课程实践基于C++实现的一个SysY到RISC-V的编译器项目源码+课程实践报告

将SysY语言编译为Koopa IR形式;将SysY语言编译为RISC-V代码;大概率通过自身崩溃检查代码错误的功能;flex/bison:编写sysy.l和sysy.y,完成词法分析和语法分析,通过表达式识别代码生成了语法分析树。libkoopa:使用该库的Koopa各种结构体,直接在AST中构建了Koopa结构的内存形式。使用该库生成Koopa代码。该库生成的代码自动完成了各种名称的去重,于是通过该库的生成再读取得到一个名字没有重复的Koopa程序,方便RISC-V的生成。

2023-12-30 10:30:00 1798

原创 Servlet+JSP 课程设计人学习辅助系统错题本管理系统在线笔记网站项目源码+数据库

想法起源于学习文化课时错题,因为懒,因此老是不复习,以及文化课笔记较杂。由于本学期有 JSP+Servlet 课程,要完成大作业,因此借此机会实现我的想法。借助 “Learning-Assistant” 来帮助自己定期规划复习时间。在笔记方面,当你迷糊记得一定内容,可是不记得在那个笔记中时,“根据内容查找便成为有利的工具”,但无论是自己用 word 还是 typora 等笔记软件,几乎都缺少或不太完美完善(好吧,或许有的很完美但我没用过…)。由于只教了 “Servlet+JSP”,只能用课本上的知识。

2023-12-29 16:40:51 1035

基于CNN模型的猫狗图像分类项目源代码+训练和测试数据集,自定义卷积神经网络模型实现猫狗图像分类

基于CNN模型的猫狗图像分类项目源代码+训练和测试数据集,自定义卷积神经网络模型实现猫狗图像分类

2025-07-03

基于Pytorch的图片修复、图片增强项目源代码

基于Pytorch的图片修复、图片增强项目源代码

2025-07-03

基于CNN和MobileNetV2-果蔬图像识别项目源代码+数据集+模型,采用自定义CNN和预训练MobileNetV2模型对果蔬进行识别并构建UI界面

基于CNN和MobileNetV2-果蔬图像识别项目源代码+数据集+模型,采用自定义CNN和预训练MobileNetV2模型对果蔬进行识别并构建UI界面

2025-07-03

Python Flask + ECharts 基于豆瓣 Top250 电影排行榜数据,进行数据可视化大屏展示分析项目源代码+数据库+详细文档

基于豆瓣 Top250 电影排行榜数据,进行数据可视化大屏展示分析,通过多维度图表呈现电影行业趋势、评分分布、类型占比等核心信息,为电影爱好者和行业研究者提供直观的数据洞察 项目简介 这是一个基于 ECharts 的数据可视化大屏项目,用于展示豆瓣 Top250 电影排行榜的各类数据统计和分析结果。项目采用前后端分离架构,前端使用原生 JavaScript + ECharts 实现数据可视化展示,后端使用 Python Flask 框架提供数据 API 服务。 功能特性 响应式布局,自适应不同屏幕尺寸 多种图表类型展示: 评分分布图:展示电影评分的区间分布情况 类型占比图:展示不同电影类型的数量占比 年份趋势图:展示不同年份电影的数量及平均评分趋势 作品评论排行榜:根据观众评分统计数量了解观众的喜欢程度和导演对作品的理解 技术栈 前端: ECharts 5.0+ 原生 JavaScript HTML5 + CSS3 后端: Python Flask RESTful API

2025-06-26

程序设计基础课程设计基于C++实现的图书馆信息管理系统源代码

程序设计基础课程设计基于C++实现的图书馆信息管理系统源代码

2025-06-26

基于 Vue 3 实现的老君山旅游评论的情感分析可视化展示系统源代码+数据+使用说明,使用 Vue 3 + D3.js + Koa.js 构建

基于老君山旅游评论的情感分析可视化展示系统,使用 Vue 3 + D3.js + Koa.js 构建。 项目结构 ├── public/ # 静态资源 ├── src/ # Vue 前端源码 │ ├── components/ # Vue 组件 │ ├── App.vue # 主应用组件 │ └── main.js # 入口文件 ├── server/ # Koa 后端服务 │ ├── data/ # Excel 数据文件 │ │ └── emotion_data.xlsx │ └── index.js # 服务器入口 ├── package.json # 统一的依赖管理 └── README.md # 项目说明 功能特性 多维度数据可视化: 饼图、柱状图、折线图、散点图等 情感分析展示: 正面、负面、中性情感分布 时间趋势分析: 情感随时间变化趋势 地区分布分析: 不同地区的评论情况 响应式设计: 适配各种屏幕尺寸 实时数据: 从 Excel 文件动态读取数据 安装依赖 npm install 开发模式 同时启动前端和后端开发服务器: npm run dev 这将启动: 前端开发服务器: http://localhost:8080 后端 API 服务器: http://localhost:3001

2025-06-25

基于 Django 开发的智联招聘数据可视化分析系统源代码+使用说明,用于分析和展示招聘市场的数据趋势和洞察

项目简介 这是一个基于 Django 框架开发的智联招聘数据可视化分析系统,用于分析和展示招聘市场的数据趋势和洞察。 技术栈 后端:Django 数据库:SQLite 前端:HTML, CSS, JavaScript 数据可视化:ECharts 数据采集:Python爬虫 主要功能 数据采集 自动爬取智联招聘数据 数据清洗和预处理 数据存储和管理 数据可视化 职位分布分析 薪资水平分析 技能要求分析 公司规模分析 行业趋势分析

2025-06-24

基于HTML+CSS的蓄电池大数据看板

基于HTML+CSS的蓄电池大数据看板

2025-06-24

基于 CNN-LSTM 混合神经网络预测与大模型分析的金融风险评估与预警系统源代码+数据+使用说明+论文

基于 CNN-LSTM 混合神经网络预测与大模型分析的金融风险评估与预警系统 一、介绍 本系统通过机器学习与大模型的结合,提供了一个功能全面、界面友好且具有创新性的金融风险评估与预警解决方案。系统能够满足金融分析师对市场数据进行深入分析和风险评估的实际需求,帮助金融分析师在波动的金融市场中做出更加科学、精准的决策。 二、系统功能 (一)数据分析与市场状态评估阶段 1.数据预处理 数据预处理是构建金融风险评估与预警系统的重要步骤,确保数据的质量、稳定性和可用性,以便后续的机器学习模型能够更好地训练和预测。以下是数据预处理的具体内容与实现方式: 导入市场数据::市场数据通常包括股票的历史数据,包含:日期,开盘价,最高价,最低价,收盘价,交易量,调整后的收盘价等等数据。

2025-06-24

基于Python开发双积分小车LQR控制器源代码+使用说明,完成动力学建模、轨迹跟踪、误差分析及可视化展示

基于LQR的双积分小车轨迹跟踪控制 该项目实现了基于线性二次型调节器(LQR)的双积分小车轨迹跟踪控制算法,并提供了可视化工具来分析控制效果。 项目描述 双积分小车是一个简单但常用的非线性系统模型,具有四个状态变量(x位置、y位置、x速度和y速度)和两个控制输入(x方向加速度和y方向加速度)。本项目使用LQR控制算法对小车进行轨迹跟踪控制,使其能够跟随预定义的轨迹。 主要功能 双积分小车系统的建模与仿真 基于LQR的控制器设计与实现 支持多种预定义轨迹(圆形、8字形、方形) 实时轨迹跟踪与可视化 控制性能评估与误差分析 参数调整与优化 文件结构 main.py: 主程序入口 vehicle_model.py: 双积分小车模型 lqr_controller.py: LQR控制器 trajectory_generator.py: 轨迹生成器 simulation.py: 仿真环境 visualization.py: 可视化功能 utils.py: 辅助函数 requirements.txt: 依赖包列表

2025-06-24

期末大作业基于 Python 开发的信阳市天气数据可视化系统源代码+数据库+课程设计报告+使用说明,通过数据采集、处理和可视化展示,实现对信阳市天气信息的多维度分析

期末大作业基于 Python 开发的信阳市天气数据可视化系统源代码+数据库+课程设计报告,通过数据采集、处理和可视化展示,实现对信阳市天气信息的多维度分析。本项目为期末大作业成果,结合前端可视化技术,将天气数据以直观的图表形式呈现。 项目特点 可视化大屏:使用 ECharts 实现天气数据动态图表展示 多维度分析:支持温度、湿度、风速等气象要素的趋势分析 数据存储:基于 mySQL 数据库管理历史天气数据 自动化采集:Python 脚本定时获取天气数据 技术栈 后端 Python 3.9+ Requests(请求接口) Flask(后端构建) pymysql(数据库交互) 前端 HTML5 + CSS3 JavaScript ECharts (数据可视化) jQuery 3.6(后端链接)

2025-06-24

毕业设计-基于5G通信网的轨道交通蓄电池大数据分析平台设计及实现,蓄电池数据采集结点控制器代码

基于5G通信网的轨道交通蓄电池大数据分析平台设计及实现,蓄电池数据采集结点控制器代码。控制平台:STM32F407VET6,操作系统:FreeRTOS,文件系统:FatFs,通讯接口:CAN、UART

2025-06-24

基于SpringBoot的数据库备份管理系统源代码+数据库+使用说明,支持手动备份、自动备份、压缩备份

技术选型 SpringBoot,MySQL,mybatis-plus,quartz,thymeleaf,lombok 安装教程 创建数据库:db-backup,导入/resources/sql/db-backup.sql,修改数据库配置信息 spring: # Mysql配置 datasource: driver-class-name: com.mysql.cj.jdbc.Driver url: jdbc:mysql://127.0.0.1:3306/db-backup?useUnicode=true&useJDBCCompliantTimezoneShift=true&useLegacyDatetimeCode=false&serverTimezone=Asia/Shanghai&useSSL=true&characterEncoding=UTF-8 username: root password: 123456 启动项目,访问:http://localhost:8080/db-backup/ 用户名密码在配置文件中 # Sa-Token-Quick-Login 配置 sa: # 登录账号 name: 'admin' # 登录密码 pwd: '123456' 可在【分区管理】中创建分区,有一个默认分区(此步骤可省略) 可在【实例管理】中添加实例,连接你的数据库信息,暂时只支持MySQL 可在【实例管理】中添加备份,有手动备份及自动备份,可备份整库和单独几张表,可单独备份表结构、表数据、表结构+表数据 可在【任务管理】中查看添加的备份任务 可在【备份记录】中查看备份的日志以及备份文件的下载

2025-06-26

课程设计基于JSP+SSM+Mysql实现的学生成绩管理系统源代码+数据库+使用说明+论文

课程设计基于JSP+SSM+Mysql实现的学生成绩管理系统源代码+数据库+使用说明+论文,主要实现的功能有教师管理、学生管理、课程管理、学生成绩管理。 数据库连接池:druid 本地运行 Eclipse环境准备 1.eclipse新增jdk eclipse新增jdk 2.eclipse新增tomcat 导入项目 若有疑惑可查看视频版本。 SSM学生成绩管理系统 1.下载zip直接解压或安装git后执行克隆命令。 git clone https://gitee.com/z77z/StuSystem.git 2.使用eclipse导入项目,配置jdk、tomcat和所需jar包。 项目所依赖jar包在WebContent/WEB-INF/lib文件夹下。 3.打开Navicat For Mysql,创建stusystem 数据库,并运行stusystem.sql文件。 4.修改src\demo.properties中数据库相关的内容。 5.发布到tomcat中,具体访问链接看tomcat配置,若未修改则http://localhost:8080/StuSystem/为登录页面。 该系统分为3种账号。 管理员初始账号:10003 系统管理员初始密码:admin 教师初始账号:20001 教师初始密码:1234

2025-06-26

基于Vue 3的环境监测数据可视化大屏项目源代码+使用说明

环境监测数据可视化大屏,旨在实时展示空气质量、温湿度、水质、能源消耗等环境数据。通过 WebSocket 实现数据的实时更新,并提供直观的图表和地图展示,帮助用户快速了解环境状况 文件结构说明 以下是项目中关键文件和目录的作用说明: 根目录 .env:存储环境变量,例如 API 密钥、端口号等配置。 .gitignore:定义 Git 忽略的文件和目录,例如 node_modules、日志文件等。 index.html:前端应用的入口 HTML 文件,包含 Vue 应用的挂载点。 package.json:项目的依赖管理文件,定义了依赖、脚本和项目信息。 pnpm-lock.yaml:锁定依赖版本,确保团队成员安装的依赖一致。 vite.config.js:Vite 的配置文件,用于定义开发服务器和构建行为。 public favicon.ico:网站的图标文件。 server index.js:后端服务的入口文件,启动 Koa 应用并配置 API 和 WebSocket。 data/:存储模拟数据的 JSON 文件。 air-quality.json:空气质量数据。 energy-consumption.json:能源消耗数据。 monitoring-stations.json:监测站点信息。 overview-stats.json:概览统计数据。 pollution-ranking.json:污染物排名数据。 temperature-humidity.json:温湿度数据。 water-quality.json:水质数据。 modules/:后端功能模块。 dataGenerator.js:生成模拟数据的工具。 fileUtils.js:文件操作工具,例如读取和写入 JSON 文件。 routes.js:定义后端 API 路由。 scheduler.js:定时任务模块

2025-06-26

基于DeepSeek AI大模型的多模态中医诊疗平台源代码+使用说明,集成了DeepSeek AI模型和EasyOCR图像识别功能,支持多模态交互,专注于中医健康咨询

一个基于Flask的智能聊天应用,集成了DeepSeek AI模型和EasyOCR图像识别功能,支持多模态交互,专注于中医健康咨询。 功能特点 智能对话:基于DeepSeek AI模型的自然语言处理能力 中医知识:内置中医理论和实践知识库 多模态输入:支持文本、图片、文档等多种输入方式 图像识别:使用EasyOCR进行图像文字识别,提取图片中的文本内容 文件处理:支持上传和处理多种文件格式(TXT、PDF、DOC、DOCX、图片等) 音频转写:支持音频文件的内容转写 知识文章:提供丰富的中医健康文章,支持评论、点赞、收藏功能 中药大全:提供中药信息查询,每页显示6个中药信息 方剂大全:提供方剂信息查询,每页显示4个方剂信息 实时响应:流式响应,即时显示AI回复 会话历史:保存对话历史,支持上下文理解 美观界面:现代化的用户界面设计,支持暗色主题 技术栈 后端:Python、Flask 前端:HTML、CSS、JavaScript AI模型:DeepSeek API 图像识别:EasyOCR 数据存储:SQLite 已修复的问题 前端问题 highlight.min.js错误:修复了咨询页面中Uncaught ReferenceError: require is not defined错误。问题原因是在浏览器环境中使用了Node.js版本的highlight.js库。已将引用改为浏览器专用版本:https://cdn.jsdelivr.net/gh/highlightjs/cdn-release@10.7.2/build/highlight.min.js 后端问题 Response未定义错误:修复了聊天接口/chat路由中的name 'Response' is not defined错误。问题原因是没有从Flask导入Response类。已在app.py文件头部添加Resp

2025-06-25

基于Django框架的登记签到系统源代码+使用说明+数据库初始化

介绍 基于Django框架的登记签到系统 软件架构 SignIn/ ├── manage.py ├── requirements.txt ├── SignIn/ │ ├── settings.py │ ├── urls.py │ └── ... ├── static/ │ ├── css/ │ ├── js/ │ └── ... ├── templates/ │ ├── base.html │ ├── home.html │ └── ... ├── media/ │ ├── uploads/ │ └── ... ├── app1/ │ ├── __init__.py │ ├── models.py │ ├── views.py │ ├── forms.py │ └── ... └── ... manage.py:Django项目的管理文件,用于执行各种管理命令。 requirements.txt:列出了项目所需的依赖项。 SignIn目录:存放项目的配置文件,如settings.py用于配置项目的设置和参数,urls.py用于定义项目的URL路由规则。 static目录:存放项目的静态文件,如CSS、JavaScript和图像文件。 templates目录:存放项目的HTML模板文件。 media目录:存放用户上传的媒体文件,如图片、视频等。 app1:是应用程序的目录。每个应用程序通常包含一个models.py文件用于定义数据库模型,views.py文件用于处理请求和生成响应. 安装依赖 ​ pip install -r requirements.txt 使用说明 首先一定先在终端中进入到项目根目录中,然后再安装执行pip命令按安装项目依赖文件 用cmd做演示: D: 先进入项目文件对应的盘符

2025-06-25

基于 Conflict-Based Search(CBS)算法的多机器人路径规划仿真系统源代码,模拟柔性 3C 制造车间中机器人将产品搬运至指定仓储区域的调度过程

基于 Conflict-Based Search(CBS)算法的多机器人路径规划仿真系统,模拟柔性 3C 制造车间中机器人将产品搬运至指定仓储区域的调度过程,支持任务自动生成、路径规划与冲突检测,是“产线至仓储一体化调度”的关键子模块。 项目亮点 基于 CBS + 时空 A* 算法,支持多机器人全局无冲突路径规划 支持仓库网格建模,机器人差速动作模拟(前进/转向/等待) 支持任务自动生成与批量调度,适用于柔性制造/智能仓储场景 完整 MATLAB 仿真流程,可输出路径动画与运行结果 模块清晰,便于研究教学与二次开发 应用背景 在柔性 3C 电子制造车间中,产品在完成生产工序后需搬运至仓储区暂存。本系统用于模拟仓储环节的智能搬运任务,确保机器人之间不冲突地完成产品上架,提高仓储效率,支撑全流程自动化调度。 算法简介 本项目采用经典的 Conflict-Based Search (CBS) 算法作为多机器人路径调度的核心框架,并结合 时空 A* 算法为单个机器人在考虑时间和方向约束的前提下规划路径。该组合兼顾路径最优性与多体避障能力,适用于仓储类高密度机器人调度场景。

2025-06-24

深度学习课程设计Python基于淘宝母婴购物数据集可视化分析项目源代码+数据集

深度学习课程设计Python基于淘宝母婴购物数据集可视化分析项目源代码+数据集

2025-06-24

基于jupyter notebook的世界杯数据可视化分析项目源代码+数据

基于jupyter notebook的世界杯数据可视化分析项目源代码+数据

2025-06-24

数字图像处理课程大作业基于Python的图像处理APP源代码,包括打开原始图像,打开灰度图像,合并通道,保存当前图像等

文件结构 main.py: 应用程序的主入口文件。 image_io.py: 处理图像输入输出的相关代码。 image_channels.py: 处理图像通道的相关代码。 image_transform.py: 处理图像转换的相关代码。 image_utils.py: 图像处理的工具函数。 language.json: 应用程序的多语言支持文件。 config.py: 配置文件。 readme.md: 项目的说明文件。 tests/: 包含所有测试图片文件 dog.jpg RGB图 dog_gray.jpg 单通道灰度图 dog_0.jpg,dog_1.jpg,dog_2.jpg R,G,B通道单通道灰度图 环境需求 本项目需要在Python 3.x环境下运行,并需要安装以下库: tkinter (通常包含在Python标准库中) Pillow (PIL) numpy scikit-image (skimage) 可以使用以下命令确保在运行项目之前已经安装了所有必需的库。 pip install scikit-image 如何运行 python main.py 项目中的 #TODO 对应Numpy图像处理基础部分课程内容,在以下函数中对应有 #TODO 的内容需要完成 main.py show_image_details 获取图像Numpy数组的基本属性 image_io.py save_image 把Numpy数组图像保存到硬盘 load_image 从硬盘载入图像到Numpy数组中 image_transform.py crop_image 对图像Numpy数组切片实现裁剪功能 image_channels.py merge_image_channels 合并多通道子图 split_image_channels 拆分多通道图的所有子图

2025-08-01

基于K近邻的猫狗图像分类器项目源码+数据集+使用说明,使用FAISS库实现

项目描述 本项目使用FAISS库实现了基于K近邻的图像分类器。该分类器可以使用CPU或GPU进行训练,并支持两种特征提取方法:flat和vgg。用户可以选择使用sklearn或faiss库实现K近邻算法。 功能 本项目实现了以下功能: 使用FAISS库实现基于K近邻的图像分类器 支持使用CPU或GPU进行训练 支持两种特征提取方法:flat和vgg 支持使用sklearn或faiss库实现K近邻算法 依赖 本项目依赖以下库: numpy faiss sklearn argparse logging tqdm cv2 os imutils pickle tensorflow 使用 安装依赖库 运行训练脚本 python train.py -m [cpu|gpu] -f [flat|vgg] -l [sklearn|faiss] 其中: -m:选择训练模式,可选值为cpu或gpu -f:选择特征提取方法,可选值为flat或vgg -l:选择使用的库,可选值为sklearn或faiss 查看训练结果 训练完成后,程序会输出最佳的k值和相应的准确率。 注意 本项目使用Python 3.8及以上版本进行开发和测试。 本项目使用FAISS库进行高效的相似度搜索和稠密向量的聚类。 本项目使用sklearn库中的K近邻分类器作为对比实验。 本项目使用VGG16模型进行图像特征提取。 本项目使用logging库记录日志。 本项目使用tqdm库在循环中添加进度条。

2025-08-01

使用sklearn的KNN实现电影推荐应用源代码+说明文档,用户可以为两部电影打分,然后系统会根据用户的评分和已有的数据预测用户可能喜欢的电影类型

软件架构 该应用使用Python编程语言,主要使用了以下库: tkinter:用于创建用户界面 pandas:用于数据处理 sklearn:用于实现KNN算法 matplotlib:用于数据可视化 应用的主要类是MovieRatingApp,它包含了应用的所有功能。 安装教程 确保你的环境中已经安装了Python和上述的库。 下载本仓库的代码。 完成代码中所有TODO的部分的内容。 在命令行中运行python movie_rating_APP.py启动应用。 使用说明 在应用中,你会看到两部电影的图片,你可以为每部电影打分(1-5分)。 选择你更喜欢的电影类型(动作片或喜剧片)。 点击"Confirm"按钮,你的评分和喜好将被记录下来。 点击"Predict"按钮,系统会根据你的评分和已有的数据预测你可能喜欢的电影类型。

2025-08-01

基于OpenCV与Mediapipe的实时手势识别系统源代码+模型+演示视频+项目文档

使用 OpenCV与MediaPipe 估计手部姿势(Python 版本)。 这是一个示例 使用检测到的关键点通过简单的 MLP 识别手势和手指手势的程序。 此存储库包含以下内容: 示例程序 手势识别模型 (TFLite) 手指轨迹识别模型 (TFLite) 用于手势识别的训练数据和用于训练的 Jupyter Notebook 文件 用于手指轨迹识别的训练数据和用于训练的 Jupyter Notebook 文件 要求 mediapipe 0.8.1 OpenCV 3.4.2 以上 Tensorflow 2.3.0 以上 tf-nightly 2.5.0.dev 以上 (仅在为 LSTM 模型创建 TFLite 时) scikit-learn 0.23.2 以上 (仅当你想显示混淆矩阵时) matplotlib 3.3.2 以上 (仅当你想要显示混淆矩阵时) 演示 以下是使用网络摄像头运行演示的方法。 python app.py 运行演示时,可以指定以下选项: --device 指定相机设备编号 (默认:0) --width 相机拍摄时的宽度 (默认:1980) --height 相机拍摄时的 Height (默认:1080) --use_static_image_mode 是否使用 static_image_mode 选项进行 MediaPipe 推理 (默认:未指定) --min_detection_confidence 检测置信度阈值 (默认值:0.7) --min_tracking_confidence 跟踪置信度阈值 (默认:0.5)

2025-07-31

数据管理课程大作业利用ETL工具Kettle Spoon对赣服通的用户行为数据进行分析与管理项目,含课程报告及答辩视频

数据管理课程大作业利用ETL工具Kettle Spoon对赣服通的用户行为数据进行分析与管理项目,含课程报告及答辩视频 一、项目概述 本项目是利用ETL工具Kettle Spoon对赣服通的用户行为数据进行分析与管理的一个项目。 二、项目整体流程分析 根据项目要求,需要在ETL任务中实现“作业”调用“作业”,“作业”调用“转换”。所以本项目共有2个“作业”,2个“转换”。 其中“bigwork(作业)” 调用 “bigwork(转换)”和“被调用的作业(作业)”,然后“被调用的作业(作业)”调用“db(转换)”

2025-07-31

基于YoloV5对水域中游泳者进行检测项目源代码+数据集+演示视频,计算机视觉目标检测

基于YoloV5对水域中游泳者进行检测项目源代码+数据集+演示视频,计算机视觉目标检测 1.2 数据集说明 数据集存放在项目根路径的 myDataSet 文件夹内,但是在实际训练时,请按照作者要求的目录机构组织数据集的位置,即让数据集和项目位于同级目录下。 swimmer_img 这个数据集是本人自己标注的水域游泳者的数据集,共有118张图片。 coco128 这个是从官网下的 coco128 数据集,已经标注好了的。 BCCD.v1-resize-416x416.yolov5pytorch 这是是血细胞的数据集,可以用来检测血细胞,同样也是标注好了的数据集,数据集来源于 B 站。

2025-07-31

Python基于卷积神经网络实现的猫狗图像分类项目源代码+数据集+汇报PPT(大数据课程大作业),附带学习笔记以及作业文档

Python基于卷积神经网络实现的猫狗图像分类项目源代码+数据集+汇报PPT(大数据课程大作业),附带学习笔记以及作业文档 基于 卷积神经网络 实现的猫狗分类(大数据课程大作业) 附带自己的深度学习学习笔记,大作业文档以及答辩PPT。 由于数据集中图片数量太多,所以将图片数据打包存在了 cats_and_dogs.zip 里面。 代码使用 jupyter notebook 编写,位于 5.2_小型数据建立卷积神经网络_猫狗图像分类2.ipynb 中

2025-07-31

基于jupyter notebook的二手车价格预测项目源代码+数据集

基于jupyter notebook的二手车价格预测项目源代码+数据集

2025-07-29

C++基于OpenCV的手写数字识别项目源代码

C++基于OpenCV的手写数字识别项目源代码

2025-07-27

基于Python卷积神经网络实现MNIST手写数字数据集识别+模型文件+GUI界面+使用说明

使用MNIST数据集训练卷积神经网络模型,用于手写数字识别 ocr.py 一个单层的神经网络,使用MNIST训练,识别准确率较低 cnn_ocr.py 两层的卷积神经网络,使用MNIST训练(模型使用MNIST测试集准确率高于99%),识别准确率较高; 但是如果写的较为随意,还是会出现分类错误的情况,可能是图像预处理的问题 cnn_ocr_2.py 直接从cnn_mnist.ckpt.meta文件中加载已经持久化的图(graph), 需要在训练的时候为tensor指定名称(cnn_mnist_train.py line82): keep_prob = tf.placeholder(tf.float32, name="keep_prob") The name 'x_input' refers to an Operation, not a Tensor. Tensor names must be of the form "<op_name>:<output_index>". cnn_ocr_2.py line33 keep_prob = tf.get_default_graph().get_tensor_by_name("keep_prob:0") cnn_mnist_train.py 训练模型的程序 模型文件 checkpoint是一个文本文件,保存了一个目录下所有的模型文件列表,这个文件是tf.train.Saver类自动生成且自动维护的。 在checkpoint文件中维护了由一个tf.train.Saver类持久化的所有TensorFlow模型文件的文件名。 当某个保存的TensorFlow模型文件被删除时,这个模型所对应的文件名也会从checkpoint文件中删除。 checkpoint中内容的格式为CheckpointState Protocol Buffe

2025-07-27

基于Pytorch框架的图像风格迁移项目源代码+使用说明

基于Pytorch框架的图像风格迁移项目 项目结构说明 ├── .DS_Store-mac os系统文件,忽略或者删除即可 ├── README.md-项目的介绍文件 ├── StyleTransfer.py-风格迁移算法 ├── img-存放风格参照、风格化图片 ├── output-存放输出图片 ├── main.py-项目的入口文件 ├── requirements.txt-记载了项目所需的库以及版本 └── rgba to rgb.py-将四维向量的图片转换为三维向量 如何运行该项目? 1.克隆该项目到本地 2.安装所需项目依赖 打开终端 cd 项目根目录 pip install -r requirements.txt 3.运行main.py文件 项目运行之前需要先修改几个参数: 打开main.py 修改content_img_path和style_img_path。前者为你要进行风格化的图片;后者为风格照片(风格参照)。 默认输出路径为./output/ 默认输出图片名称为output.jpg python main.py

2025-07-27

多平台自动签到助手基于SpringBoot开发的京东、掘金、阿里网盘定时签到服务源代码+使用说明,docker-compose一键编排部署

多平台自动签到助手-基于SpringBoot的定时薅京东、掘金羊毛、阿里网盘自动签到的应用docker-compose一键编排部署 食用方法(docker compose一键部署) 下载项目压缩包并解压缩,不要调整目录结构以及文件所在路径 配置 \config\application.properties配置文件 扔到linux服务器上,执行docker-compose up -d就部署成功了

2025-07-27

基于卷积神经网络在MNIST数据集上实现手写数字识别Python源代码+权重文件+使用说明(含GUI)

MNIST数据集卷积神经网络实现手写数字识别应用(GUI) 项目的一些必要说明 代码中GUI实现的并不美观,只是实现出来GUI需求,大家有需要的可以调整一下布局让GUI更加美观。 谢谢B站的朋友们指正代码错误之处! 代码有两种暂时有两种下载方式: 直接clone仓库代码 环境信息 tensorflow版本为2.0.0及以上应该都可以运行 我的python版本为3.7(兼容tensorflow2.0及以上版本的Python版本应该都可以) Operation System:Windows10 IDE:Pycharm 演示用的图片我已经放到numbers_images文件夹中了,百度网盘不方便的直接clone整个仓库即可 图片是MOOC上《人工智能实践:Tensorflow笔记》北大曹健老师https://www.icourse163.org/course/PKU-1002536002?tid=1452937471 课程中演示的那10张图片。 项目说明 CNN-Model.py为卷积神经网络的训练文件。 gui.py为图像化界面的启动文件 checkpoin和weights.txt均为卷积神经网络的训练参数。 recongnition.py和icon.ico不要修改。 执行步骤 训练好的checkpoint和weights.txt文件已经在仓库里面了,如果想自己训练可以直接run CNN-Model.py即可,run完也会生成checkpoint和weights.txt文件。 直接执行recognition.py文件,出现gui窗口,选择图片识别即可

2025-07-27

基于gradio应用在 minist 上训练的最佳 KNN 手写数字识别项目源码+使用说明

项目简介 这个项目包含两个主要的Python脚本:pinecone.py 和 optimal_knn_webapp.py。 pinecone.py 参考使用Pinecone进行数字判断的实例撰写代码实现,用80%的mnist数据创建Pinecone的索引,用20%的数据测试当k=11时准确率 最终用logging打印: 成功创建索引,并上传了1437条数据 当k=11是,使用Pinecone的准确率 上传数据和测试k的准确率的时候都要有进度条 用logging打印的信息需要有日期 optimal_knn_webapp.py 脚本使用Gradio库创建一个web应用,该应用可以接收用户的手写数字图像输入,然后使用之前保存的最优KNN模型进行预测,最后返回预测的数字。Gradio库使得创建这个用户友好的界面变得简单快捷。 安装 以下是安装步骤: 克隆这个仓库到你的本地机器上。 安装必要的Python库,包括sklearn,matplotlib,pickle,tqdm,gradio,numpy,PIL和cv2。 填充pinecone.py中所有#TODO部分内容,运行脚本,生成最优的KNN模型。 填充optimal_knn_webapp.py部中所有#TODO部分内容,运行脚本,启动web应用。 使用 以下是如何使用我们的项目: 在你的浏览器中打开web应用。 在sketchpad中绘制一个数字。 点击“提交”,你将看到模型预测的数字。

2025-08-01

基于Android Studio开发人脸静默活体检测APP源代码,通过光线、摩尔纹等因素来判断是否是活体

静默活体检测是通过光线、摩尔纹等因素来判断是否是活体,能够有效防止使用视频、图片、打印类物质或带头套等手动试图欺骗人脸识别

2025-07-29

基于深度学习的Python人脸静默活体检测算法项目源代码+模型文件+文档说明+数据集

人脸活体验证是人脸识别过程中重要的一环,主要用以区分真实人脸与假脸图像,能够识别利用纸张打印、屏幕翻拍、3D模型等方式的欺骗行为。我们在算法设计阶段,尝试了不同的方法,包括:SVM、LBP、深度学习等。针对单一场景或者摄像头,能够得到不错的效果,但是没有得到一个能够适配多种摄像头的活体算法,这里我们将其中一个较好模型开放出来,但是在逆光等情况下效果依然不是很好,大家可以作为参考。 这个模型大约采用了36w张图像,其中假脸18w张,真脸18w万张,包括纸张、屏幕,也采用了大部分公开的假脸数据集。 依赖 基于mobilenet-0.5 OpenCV 3.4.3+ MTCNN人脸检测 Keras,TF Python3 运行 python src/demo.py

2025-07-29

毕业设计基于神经网络keras的水果识别系统源代码+模型文件+数据库+论文+演示视频,计算机视觉应用项目设计

软件架构 前端:uniapp+diygwUI框架设计 后端: 若依前后端分离框架3.8.1版本 识别模块:tensorflow2.0, 神经网络采用keras, 采用requests向后端发送get和put请求,完成前端上传图片,识别图片,返回结果功能 安装教程 识别模块:根据requirements.txt完成 后端:mysql-8.0.28和Redis 在该系统中采用前后台分离,多线程更新的方法。选择wxPython作为python的GUI库,通过继承wx.Frame,构造一个子类,在子类的构造函数中添加所需要的控件,并将控件与自定义的事件函数相互绑定,经由控件来控制事件函数的调用,而后,通过使用多线程技术,子线程运行后台程序,主线程更新前台UI

2025-07-09

软件工程大作业基于vue3+element+echarts的校园二手交易平台的前端源代码+使用说明,网页的各个地方均有过渡动画,具有良好的人机交互性

项目简介 本项目——闲猫二手交易平台,网页的各个地方均有过渡动画,具有良好的人机交互性。软件工程大作业制作不易,觉得有参考价值还请点点右上角star QwQ 本交易平台支持 邮箱注册(当初在服务器上部署时这个功能卡了很久),邮箱找回密码 权限分离,分为普通用户和管理用户,相同的界面登录 商品审核,管理员可以审核普通用户发布的商品 如何运行 首先确定电脑上装了node.js,没有的请去官网下载 https://nodejs.org/en 下载项目,在控制台输入如下代码: npm install 如果提示找不到npm命令,那可能是你的电脑环境变量没有配置好,请百度环境变量配置方法 输入上述代码没有报错后继续输入: npm run dev 看到服务器启动后点击链接访问网页 QS: 1、这里同时要配合后端使用,否则只能进入到首页,可以修改person.vue中的登录标志位logged为true,先看看效果 2、后端由于小组成员电脑之间多次迁移数据,导致本人版本可能不是最终版本,所以暂时先写到这

2025-07-03

Python基于深度学习的电影推荐系统源代码+数据+模型文件

Python基于深度学习的电影推荐系统源代码+数据+模型文件

2025-07-10

HRW编译原理课程设计基于python+numpy+pyqt5实现的带图形界面C语言编译器源代码+使用说明,支持查看词法分析结果,语法分析结果,语义分析,支持生成8086的汇编代码

HRW编译原理课程设计基于python+numpy+pyqt5实现的带图形界面C语言编译器源代码+使用说明,支持查看词法分析结果,语法分析结果,语义分析,支持生成8086的汇编代码 编译原理大作业,一款带图形界面编译器,HRW课设,使用python+numpy+pyqt5实现 需要的依赖 prettytable、numpy 使用时通过以下命令安装 pip install prettytable pip install numpy 启动 使用控制台 python main.py 使用图形界面 python graphics/main_GUI.py 文法的修改 在rule文件夹下的grammar.txt 按照格式添加自己所需要的文法即可 <语句> ::= <赋值语句> 注意:文法不能有左递归和回溯

2025-07-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除