本期内容:
1 Spark SQL操作关系数据库的意义
2 Spark SQL操作关系数据库实战
一:使用Spark通过JDBC操作数据库
1, Spark SQL可以通过JDBC从传统的关系型数据库中读写数据,读取数据后直接生成的是DataFrame。然后再加上借助于Spark内核的丰富的API来进行各种操作。从计算数据规模的角度去讲,集群并行访问数据库数据;
2,通过format(“jdbc“)的方式说明SparkSQL操作的数据来源是通过JDBC获得,JDBC后端一般都是数据库,例如MySQL、Oracle等;
3,通过DataFrameReader的optition方法把要访问数据库的信息传递进去:
url:代表数据库的jdbc链接地址;
dbtable:具体要链接那个数据库;
driver:Driver部分是Spark SQL访问数据库的具体的驱动的完整包名和类名
4,关于JDBC的驱动的Jar,可以放在Spark的library目录,也可以在使用Spark Submit的使用指定具体的Jar(编码和打包的时候都不需要这个JDBC的Jar);
5,在实际的企业级开发环境中,如果数据中数据规模热别大,例如10亿条数据,此时采用传统的DB去处理的话一般需要对10亿条数据分成很多批次处理,例如分成100批(受限于单台Server的处理能力),且实际的处理过程可能会非常复杂,通过传统的Java EE等技术可能很难或者不方便实现处理算法,此时采用Spark SQL活得数据库中的数据并进行分布式处理就可以

本文介绍了如何使用Spark SQL通过JDBC接口连接和操作SQL Server数据库。内容包括Spark SQL操作关系数据库的意义,详细步骤如设置JDBC连接参数,以及在企业级开发中利用Spark SQL处理大规模数据的策略。示例代码展示了如何读取SQL Server数据并展示前100行。
最低0.47元/天 解锁文章
297

被折叠的 条评论
为什么被折叠?



