点击上方蓝字关注,获得更多精彩内容~
分式的化简求值方法是“分式”这一章的解题命脉,特别是“分式的恒等变形”一直是同学们攻克难题的一大障碍!
此外,分式的化简求值也是“代数式恒等变形”的核心之一,它让“整式的恒等变形”告别了单身,两者相得益彰!
分式方程则是“分式”这一章的必考内容,对于初次接触分式方程的同学们而言,困扰大家最多的两个问题,就是“计算技巧”和“增根”的问题,前者往往是由于没有找到正确的思路导致的,而后者则更多地出现在由“增根”确定字母系数的问题上!
为此,优能中学蒋晓濛老师将针对期末考试“分式化简与分式方程”中的一些常考难题进行题型的归纳总结,让大家今后画瓢的时候有葫芦可以参照。话说至此,咱就步入正题吧~

分离常数的方法:将分式拆分,在分子上凑出分母。
标志题型:已知一个分式为整式,求所含字母的取值范围。
当要求的分式中出现多个未知数时,可以把其中一个当成已知数,用来表示其他未知数,从 而达到消元的目的。
与“消元”相对,若分式中只有一个字母,但出现多种次数,可采用“降次”的策略。
当分式的分母为多项式,分子为单项式,且不便化简时,可以考虑“取倒数”。
当遇到连等式时,要直接想到将连等式的结果设为 K ,然后将题目中的其他字母用含 K 的 代数式表示。
标志题型:求整个分式的取值范围,可以将整个分式设为一个字母,用含这个字母的代数式
来表示原分式中的未知数,从而确定原分式的范围。
基本思想:化分式方程为整式方程。
具体步骤:去分母 解方程
检验注:解分式方程一定要有检验的过程,检验的方法是将整式方程的根代入各分式的分母(或 最简公分母),看结果是否为零,若结果为零,此整式方程的根是原方程的增根,原方程无解;若结果不为零,则此整式方程的根就是原方程的解。
【题目视野拓展来啦!睁大眼睛哦!】
对于形式比较复杂的分式方程,需要通过观察其内部特征,以期找到最佳的解题策略。
常用技巧:换元法、分离常数法、裂项法。
【解题秘籍】:
换元法在整式和分式章节都比较常用,一般情况,当题目中存在“重复部分 反复出现,或者有明显和差或倍数关系的部分出现”等情况时,我们一般会采用换元法。换 元法切记勿忘还原,要灵活运用换多个元。
【注:在解分式方程的过程中,遇到等式两边含有相同代数式的情况时,切不可直接将它们 约去,需要慎重考虑这个代数式是否为零。】
【解题秘籍】:
分离常数法适用于分子分母中都含有字母的分式,并且分子的次数不小于分 母的次数,在特殊方法的分式化简、分式方程和求整数解和求特殊关系解问题中经常使用。
【解题秘籍】:
“分数裂项”是六年级所学的内容,当数向式进行转换时,原来的“分数裂项” 就变为了“分式裂项”,分式裂项的特点是,对分式的分母进行因式分解之后,能直观看出其差是定值,通过六年级所学的(下方)公式,即可迎刃而解。
解题思路:
把参数当成已知数,将分式方程化为整式方程的最简形式(或标准形式),然后 根据根的情况求出参数。
一般情况,含参数的分式方程分为“增根问题、无解问题、特殊关系解问题”等。


同学们,复习之后,咱就利用 40 分钟的时间做四道期末真题,看看你对分式化简和方程的 常用方法是否全部掌握了吧!
欲获取真题解析答案
请关注下方公众号
回复关键字“分式化简与方程”即可获取哦~
