分式化简结果要求_期末数学必考题冲刺 ——初一分式化简与分式方程

本文详细介绍了分式化简与分式方程的解题方法,包括分离常数、消元、降次、取倒数、换元法和裂项法等技巧,强调了解分式方程时的检验过程和避免增根的重要性,旨在帮助初中生更好地应对期末考试中的分式难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e15a6a7090dce347ec5bd5d258663d1f.gif

点击上方蓝字关注获得更多精彩内容~

分式的化简求值方法是“分式”这一章的解题命脉,特别是“分式的恒等变形”一直是同学们攻克难题的一大障碍!

此外,分式的化简求值也是“代数式恒等变形”的核心之一,它让“整式的恒等变形”告别了单身,两者相得益彰!

分式方程则是“分式”这一章的必考内容,对于初次接触分式方程的同学们而言,困扰大家最多的两个问题,就是“计算技巧”和“增根”的问题,前者往往是由于没有找到正确的思路导致的,而后者则更多地出现在由“增根”确定字母系数的问题上!

为此,优能中学蒋晓濛老师将针对期末考试“分式化简与分式方程”中的一些常考难题进行题型的归纳总结,让大家今后画瓢的时候有葫芦可以参照。话说至此,咱就步入正题吧~

91090fe2c8007ee1167cb808dcff9a3a.gif0 1 ☆分式的恒等变形拓展一、分式恒等变形1——分离常数法✚●○

分离常数的方法:将分式拆分,在分子上凑出分母。

标志题型:已知一个分式为整式,求所含字母的取值范围。

1d3209e15de8a686116c9b44b65e49de.png

二、分式恒等变形 2——消元法✚●○

当要求的分式中出现多个未知数时,可以把其中一个当成已知数,用来表示其他未知数,从 而达到消元的目的。

8a17ffe265b1357b032c82e452fcbf30.png

三、分式恒等变形 3——降次法✚●○

与“消元”相对,若分式中只有一个字母,但出现多种次数,可采用“降次”的策略。

88814b4bde6fc378cb6b5ef4fd1dc99f.png

四、分式恒等变形 4——取倒数法✚●○

当分式的分母为多项式,分子为单项式,且不便化简时,可以考虑“取倒数”。

e54f117d8e3503b2c28f413160d98a22.png

五、分式恒等变形 5——设 K 法✚●○

当遇到连等式时,要直接想到将连等式的结果设为 K ,然后将题目中的其他字母用含 K 的 代数式表示。

42d9cd3b4295a527cedb601ff841c502.png

53e829d3d23d788887868cc28594049d.png

六、分式恒等变形 6——反向表示求范围法✚●○

标志题型:求整个分式的取值范围,可以将整个分式设为一个字母,用含这个字母的代数式

来表示原分式中的未知数,从而确定原分式的范围。

71e4f503100732999b162e6661a29e91.png

0 2 ☆分式方程的基本解法及常见技巧一、基本思想及步骤✚●○

基本思想:化分式方程为整式方程。

具体步骤:去分母 解方程 

检验注:解分式方程一定要有检验的过程,检验的方法是将整式方程的根代入各分式的分母(或 最简公分母),看结果是否为零,若结果为零,此整式方程的根是原方程的增根,原方程无解;若结果不为零,则此整式方程的根就是原方程的解。

1cca0754059842d3000eb75522051201.png

03427635aa54b7e13dcc371173a4f5aa.png

二、常见技巧✚●○

【题目视野拓展来啦!睁大眼睛哦!】

对于形式比较复杂的分式方程,需要通过观察其内部特征,以期找到最佳的解题策略。

常用技巧:换元法、分离常数法、裂项法。

55379e60a282263fb10e930ea160e559.png

【解题秘籍】:

换元法在整式和分式章节都比较常用,一般情况,当题目中存在“重复部分 反复出现,或者有明显和差或倍数关系的部分出现”等情况时,我们一般会采用换元法。换 元法切记勿忘还原,要灵活运用换多个元。

82d4a1090fbd14ebcf418d727a948eeb.png

注:在解分式方程的过程中,遇到等式两边含有相同代数式的情况时,切不可直接将它们 约去,需要慎重考虑这个代数式是否为零。】

【解题秘籍】:

分离常数法适用于分子分母中都含有字母的分式,并且分子的次数不小于分 母的次数,在特殊方法的分式化简、分式方程和求整数解和求特殊关系解问题中经常使用。

36cfce8e24c6c85abca1753ef44b29b8.png

【解题秘籍】:

“分数裂项”是六年级所学的内容,当数向式进行转换时,原来的“分数裂项” 就变为了“分式裂项”,分式裂项的特点是,对分式的分母进行因式分解之后,能直观看出其差是定值,通过六年级所学的(下方)公式,即可迎刃而解。

9b8b936c21b0a7bc9465fecfbe1fac69.png

0 3☆含参数的分式方程

解题思路:

把参数当成已知数,将分式方程化为整式方程的最简形式(或标准形式),然后 根据根的情况求出参数。

一般情况,含参数的分式方程分为“增根问题、无解问题、特殊关系解问题”等。

782b2895255c43e2bc96770f5a539338.png

7e31c1110c9502a028a251890ca636bc.png

124318d6638de61f46d4d8a35f5783a2.png 124318d6638de61f46d4d8a35f5783a2.png 真题小试牛刀

同学们,复习之后,咱就利用 40 分钟的时间做四道期末真题,看看你对分式化简和方程的 常用方法是否全部掌握了吧!

dfdb5398504d3376b6e6252d5f3c30aa.png

名师介绍 蒋晓濛老师

b34ab6efc2bb5bbd5bbec006dec0ded6.png

欲获取真题解析答案

请关注下方公众号

回复关键字“分式化简与方程”即可获取哦~

cab09af8c14513869868112fa592a863.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值