python 估值模型_Python实现LRFM模型分析客户价值

本文通过Python实现LRFM模型,利用KMeans聚类对某电商平台销售数据进行客户价值分析。通过对L(会员创建日期距离指定时间的间隔)、R(最近购买时间距离指定时间的间隔)、F(购买次数)、M(购买金额)四个指标的计算和处理,将客户分为5个群体,分别为重要发展客户、重要挽留客户、低价值客户、一般价值客户和重要保持客户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 分析背景

这是一份某电商平台的销售数据,数据包含2010年4月22到2014年7月24的销售数据。分析该销售数据,可以发现客户价值。

现利用KMeans聚类实现LRFM模型来分析客户的价值,便于客户分群,针对性推广,提高销售额。

LRFM模型定义:L:会员创建日期距离距离2014年7月25的时间间隔(单位:月 )

R:会员最近一次购买时间距离2014年7月25的时间间隔(单位:月 )

F:会员购买次数

M:会员的总购买金额

2. 分析流程

7e534bd506eb6a1f1b814682ad45ecb9.png

3. 数据探索

3.1 导入相关包和读取数据import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn import preprocessing

from datetime import datetime

from sklearn.cluster import KMeans

plt.rcParams['font.sans-serif'] = 'SimHei'

%matplotlib inline

# 读取数据

df = pd.read_csv(r'C:/Users/Administrator/Desktop/RFM分析1.csv',

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值