1. 分析背景
这是一份某电商平台的销售数据,数据包含2010年4月22到2014年7月24的销售数据。分析该销售数据,可以发现客户价值。
现利用KMeans聚类实现LRFM模型来分析客户的价值,便于客户分群,针对性推广,提高销售额。
LRFM模型定义:L:会员创建日期距离距离2014年7月25的时间间隔(单位:月 )
R:会员最近一次购买时间距离2014年7月25的时间间隔(单位:月 )
F:会员购买次数
M:会员的总购买金额
2. 分析流程
3. 数据探索
3.1 导入相关包和读取数据import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
from datetime import datetime
from sklearn.cluster import KMeans
plt.rcParams['font.sans-serif'] = 'SimHei'
%matplotlib inline
# 读取数据
df = pd.read_csv(r'C:/Users/Administrator/Desktop/RFM分析1.csv',