matlab fminunc函数,matlab - fminunc 函数

这篇博客介绍了如何在MATLAB中使用fminunc函数来寻找无约束的多变量函数的局部最小值。首先定义目标函数objfun,然后设置优化选项,例如使用'quasi-newton'算法。接着,从初始值开始运行fminunc,最终得到最小值解x,函数值fval,退出标志exitflag和优化过程信息output。示例展示了完整的步骤和输出结果。
摘要由CSDN通过智能技术生成

功能

找到最小的无约束多变量函数

min f(x)

x

where f(x) is a function that returns a scalar(标量).

x is a vector or a matrix;

语法

x = fminunc(fun,x0)

x = fminunc(fun,x0,options)

x = fminunc(problem)

[x,fval] = fminunc(___)

[x,fval,exitflag,output] = fminunc(___)

[x,fval,exitflag,output,grad,hessian] = fminunc(___)

描述

x = fminunc(fun,x0)从x0开始,尝试寻找fun中描述的函数的局部最小值x。 点x0可以是标量,矢量或矩阵

x = fminunc(fun,x0,options)使选项中指定的优化选项最小化。 使用optimoptions来设置这些选项。

x = fminunc(problem) finds the minimum for problem, where problem is a structure described in Input Arguments. Create the problem structure by exporting a problem from Optimization app, as described in Exporting Your Work.

[x,fval] = fminunc(___),对于任何语法,返回的解x

[x,fval,exitflag,output] = fminunc(___)另外返回一个描述fminunc退出条件的值exitflag,以及一个带有关于优化过程信息的结构输出。

[x,fval,exitflag,output,grad,hessian] = fminunc(___)另外返回:

grad — Gradient of fun at the solution x

hessian — Hessian of fun at the solution x. See fminunc Hessian.

例子

Step 1: Write a file objfun.m.

function f = objfun(x)

f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Set options.

设置选项以使用“quasi-newton”算法。 设置选项是因为“trust-region”算法要求目标函数包含渐变。 如果您没有设置选项,那么根据您的MATLAB®版本,fminunc可以发出警告。

options = optimoptions(@fminunc,'Algorithm','quasi-newton');

Step 3: Invoke fminunc using the options.

x0 = [-1,1]; % Starting guess

[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

结果

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the optimality tolerance.

x =

0.5000 -1.0000

fval =

3.6609e-15

exitflag =

1

output =

iterations: 8

funcCount: 66

stepsize: 6.3361e-07

lssteplength: 1

firstorderopt: 1.2284e-07

algorithm: 'quasi-newton'

message: 'Local minimum found.…'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值