点击上方蓝字关注“中国科技论文在线”



k-means 聚类结果


刘春柳,张征

华中科技大学人工智能与自动化学院
摘要准确预测城市用水量可以对智慧水务调度、报警提供支持,预测前对所有用水量曲线进行聚类可以提高预测的精度。为了满足实时性和运行效率的要求,提出了基于形态特征的分段聚合近似表示方法(shape-based piecewise aggregate approximation,SPAA),同时为了解决传统基于欧氏距离的聚类算法无法包含曲线的形状特征的问题,提出了自适应聚类数的基于序列形态相似性的k-shape聚类算法,另外采用一种基于质心的聚类中心计算方式,提取每类簇用水量曲线形态。最后,对某水务公司的用水量数据实例进行聚类分析,结果表明本文所提的SPAA-k-shape算法可以有效降维,减少聚类计算时间,比传统仅考虑欧氏距离的算法更准确。
关键词曲线聚类;k-shape算法;分段聚合近似
同行评议★★★★
THE END
国内最大的预印本库,免费OA论文库


教育部科技发展中心