python编写一个简单的程序、验证数据是否符合正态分布_Python检验数据是否正态分布...

本文介绍了Python中用于检查数据是否符合正态分布的四种方法:Shapiro-Wilk test、Kolmogorov-Smirnov test、Anderson-Darling test和Lilliefors-test。每种方法的统计原理、Python实现和如何解读结果都进行了详细说明。
摘要由CSDN通过智能技术生成

判断数据是否符合正态分布,比如使用3-sigma判断数据异常前,首先需要确定的是数据是否符合正态分布。今天一起梳理下检测正态分布的方法。

Shapiro-Wilk test

Shapiro-Wilk test是一种在频率上统计检验中检验正态性的方法。该检验的零检验是样本$x_1,cdots ,x_n$来自于一个正态分布的母体。这个检验的统计量是:

$$W = frac{(sum_{i=1}^{n}a_{i}x_{(i)})^2}{sum_{i=1}^{n}(x_i-bar{x})^2}$$

其中:

$x_{(i)}$用括号包含下标索引i的;不与x混淆,它是第i阶统计量,即样本中的第i个最小数

$overline {x}=(x_{1}+cdots +x_{n})/n$是样本的平均值。

常量$a_i$通过公式$(a_1,dots ,a_n)=frac{m^{T}V^{-1}}{sqrt{(m^{T}V^{-1}V^{-1}m)}}, m=(m_1,dots ,m_n)^T$,其中$m_1,dots ,m_n$是从一个标准的正态分布随机变量上采样的有序独立同分布的统计量的期望值。V是这些有序统计量的协方差。

这个统计检验的假设是样本来自于一个正态母体,因此,一方面,如果p值小于选择的显著度水平(通常0.05),那么在更大概率下我们应该拒绝零假设,数据的证据显示我们的样本不是来自一个正态分布母体。另一方面,如果p值比选择的显著度水平大,那么我们没有证据拒绝零假设,数据来自于一个正态分布。

Python代码:import numpy as np

from scipy import stats

np.random.seed(0)</

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值