基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

 

    本次演示部署环境:Windows 10专业版,转载请说明出处

下载安装Docker

  Docker官网:https://www.docker.com/

自定义Docker安装路径

  Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。

新建安装目录:E:\MySoftware\Docker并将Docker安装包放在目录内,这里有个小细节,安装包名称一定要改下,官网下载下来的名称叫:Docker Desktop Installer.exe,一定要修改一下,不能用这个名字,否则等下在CMD命令安装的时候就会报错说被资源占用,因为Docker在安装时会解压一个一模一样名称的exe程序,重名就会导致安装失败,所以一定要改下名字。

  在文件路径输入cmd回车

 输入:

 
   
.\"Docker.exe" install --installation-dir=E:\MySoftware\Docker
语法:.\”安装程序名称” install --installation-dir=指定Docker安装的路径

   安装完成后会提示Installation sueceeded

  桌面会出现Docker图标

  启动Docker这里很多人会报这个错,这个是因为电脑没有WSL导致无法启动Docker容器。

下载WSL

  进入微软官网按步骤执行即解决,几分钟完成。

https://learn.microsoft.com/zh-cn/windows/wsl/install-manual#step-4---download-the-linux-kernel-update-package

  用管理员身份打开Powershell窗口,粘贴微软官网的命令执行下载即可

粘贴执行:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
wsl --set-default-version 2

  下载完后会启动一个这个页面,可以关闭。

  注:完成内核更新包安装后需重启系统(微软官方指南),再启动下Docker,出现这个界面就代表WSL和Docker都启动成功了。

Docker镜像存储迁移

  这时进入Docker设置中,将Docker的镜像资源存放路径改一下,不然都会下载都C盘。

Docker镜像源加速配置

  至关重要的地方来了,打开Docker的设置中的-->Docker Engine,然后把国内的镜像源复制进去保存,我这里提供一些,如果失效了就百度找新的。

复制代码
{
"registry-mirrors": [
"https://docker.m.daocloud.io",
"https://noohub.ru",
"https://huecker.io",
"https://dockerhub.timeweb.cloud",
"https://0c105db5188026850f80c001def654a0.mirror.swr.myhuaweicloud.com",
"https://5tqw56kt.mirror.aliyuncs.com",
"https://docker.1panel.live",
"http://mirrors.ustc.edu.cn/",
"http://mirror.azure.cn/",
"https://hub.rat.dev/",
"https://docker.ckyl.me/",
"https://docker.chenby.cn",
"https://docker.hpcloud.cloud",
"https://docker.m.daocloud.io"
]
}  
复制代码

   保存镜像源后就可以试一下拉取镜像,如果拉取不成功也可以重启下Docker,还是不行提示超时就说明镜像源失效了,就在网上搜索下新的镜像源。

测试拉取镜像

  在cmd命令窗口输入:

docker pull hello-world

  出现这个Status: Dowloaded newer image for hello-world:latest就代表镜像源没有问题。

安装Dify

下载Dify代码包

  进入github下载Dify代码包:https://github.com/langgenius/dify

  解压代码包后,把压缩后的文件夹复制到自己想要安装的目录下,这里复制一下.env.example文件,然后重命名一下改成.env

  在当前文件路径下输入CMD回车

拉取Dify依赖镜像资源

  粘贴以下命令回车,会自动下载一些依赖资源。如果你的下载失败就是镜像源失效了,换一个镜像源,重新拉取镜像。

docker-compose up -d

   下载完成

  回到Docker可以都看到已经下载好的镜像全部都显示了,并且都在运行。

进入Dify后台

  输入http://127.0.0.1/会自动打开Dify的页面,有人会遇到这个Internal Server Error报错,这是因为镜像下载来后,有部分镜像还在启动中或未启动,这时候将所有镜像重启一次才可以。

  重启所有镜像

创建管理员用户

  重新进入Dify管理后台,首次进入需创建管理员用户。

  创建管理员用户后,将进入登录界面。

  登录成功

添加AI模型

  点击右上角头像-设置

成员这里可以创建企业内成员进行登录使用。

  选择模型供应商

  这里我本地已经安装部署好了Ollama和Deepseek R1和BGE-M3模型,如果没有部署好的请看我这篇文章本地电脑部署DeepSeek 大模型AI

  由于我本地已经安装好了Ollama,所以就找到Ollama,点击安装插件,其他供应商选择对应安装。下载可能稍慢,请耐心等待。

  添加模型时,若不知模型名称,可在CMD中输入Ollama list查看本地模型名称并复制。

模型类型:

推理模型 → LLM
嵌入模型 → Text Embedding

模型名称就把刚刚复制下来的粘贴上去就可以了。

这里IP地址要注意了,由于我没有用Docker容器里部署Ollama,而是在本地电脑安装的Ollama,这里对IP就要进行特殊处理下了,需要改为:http://host.docker.internal:11434。

网络通信原理:
host.docker.internal为Docker内置域名解析,实现容器与宿主机服务的桥接。简单说就是Docker自己和我们电脑主机网络做了一个映射关系。

   模型添加完成

创建应用

  其实我也不太会使用,就简单粗糙的做个示范吧,要深入研究需要找下资料学习下。

这里我选择创建聊天助手(每个不同应用的作用不一样,选择与自己相符的就行)

  添加一些提示词、变量、知识库、模型,设置好后在右边可以调试预览效果,调试完成后就可以发布应用了。

  这里提一句,由于我自己的电脑资源很一般,所以每次一提问的时候资源就占比很高,不过等AI思考完毕后资源占用会下降。

   测试结果,虽然回答是错误的。

知识库测试

  我这里测试了下知识库检索,上传了6个本地文档。

   然后我简单的定义了提示词后,对模型提出问题:结合知识库帮我找出住在向XXX街道人员的电话和姓名。

 

 

  然后真的回答对了,全体起立!

  这是源文件里的内容。(虚拟信息,如有雷同纯属巧合)

 

WSL资源控制

  由于我是针对个人学习,在学习完后我发现我的电脑内存占比一直居高不下,在任务管理器查到了是一个Vmmem的进程占用,大概也知道应该是虚拟机类的占用。

  搜索了下网上资源了解到vmmem是一个由WSL(Windows Subsystem for Linux)创建的虚拟进程,主要用于管理WSL2的内存和CPU资源。当WSL2运行时,Vmmem进程会占用大量的内存和CPU资源,以确保虚拟机的最佳性能。然而,这可能会导致主机系统的其他应用程序运行缓慢或无法正常运行‌。

关闭WSL服务

  所以如果不用的时候可以关闭掉WSL服务。

在cmd里输入:

wsl --shutdown

  关闭后电脑资源就回到正常状态了。

启动WSL服务

  那如果我们后再用的时候就重新启动WSL服务就可以。

在cmd输入:

wsl

最后的最后

  关于Dify的作用文中提到的只是冰山一角,它真正的厉害之处是它的工作流,由于博主知识有限,只能教大家部署应用,具体的功能开发使用还要大家自行学习,后续博主也会去学习Dify的相关知识,有机会的话就再开一贴。如有讲的不对的地方,敬请指正。

附上Dify的官方操作手册地址:https://docs.dify.ai/zh-hans

  这是我整个学习过程中遇到的问题,最后结合百度和AI最后都完成解决了。

总结几个小坑:

1、WSL2的安装。

2、Docker容器镜像源的设置。

3、Dify依赖镜像的拉取。

4、Dify添加模型时IP映射设置。

                       觉得不错的麻烦大家动动发财的小手点下推荐,谢谢!!!

 

原创作者: LaiYun 转载于: https://www.cnblogs.com/LaiYun/p/18808736
### DifyDeepSeek 技术文档与使用教程 #### 一、Dify 的介绍及其应用 Dify 是一款用于快速创建和部署 AI 应用程序的强大工具,支持开发者轻松集成各种大型语言模型 (LLM),并提供了一系列开箱即用的功能模块来加速开发过程。对于希望利用先进的人工智能技术提升业务效率的企业而言,Dify 提供了一个理想的解决方案[^1]。 #### 二、DeepSeek 功能特性概述 DeepSeek 则专注于为企业级用户提供高性能的知识检索服务,能够帮助企业建立私有化知识库管理系统。它不仅具备强大的文本处理能力,还特别擅长于理解复杂语义结构以及挖掘深层次的信息关联,在此基础上实现了精准的内容匹配和服务推荐机制[^3]。 #### 三、基于 Dify 构建 DeepSeek 多模态增强版 为了进一步拓展 DeepSeek 的应用场景范围,可以通过引入 Dify 来为其增添更多维度的数据感知能力和交互方式。具体来说就是采用 DeepSeek-R1 版本作为核心推理引擎,并借助 Dify 实现对图像识别、语音合成等多种媒体类型的全面支持,从而形成一个多感官融合的信息查询平台[^2]。 #### 四、两者之间的对比分析 | 比较项 | Dify | DeepSeek | |------------|----------| | 主要用途 | 创建AI应用程序 | 建立企业级知识库 | | 集成模式 | 可与其他API无缝对接 | 支持多种主流LLM模型 | | 数据处理 | 强化多模态数据解析 | 文档解析 | | 用户体验优化 | 自定义UI设计 | 精准内容匹配 | #### 五、安装配置指南 针对想要尝试这两款产品的技术人员,以下是简要的操作指引: ##### 安装环境准备 确保服务器满足最低硬件要求,并完成 Python 环境搭建工作;同时建议预先熟悉 Docker 容器技术和 Kubernetes 编排框架的相关概念以便后续操作更加顺利。 ##### 下载源码包 访问官方网站获取最新版本的软件分发文件,按照提示说明解压至指定目录下即可开始下一步设置流程。 ##### 初始化数据库 根据实际需求选择合适的数据库类型(MySQL 或 PostgreSQL),执行初始化脚本来创建必要的表单结构及初始数据集。 ##### 启动服务实例 通过命令行界面启动各个组件的服务进程,注意监听端口号是否冲突以及其他可能影响正常运行的因素存在。 ```bash docker-compose up -d ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值