自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(900)
  • 收藏
  • 关注

原创 七种RAG架构cheat sheet!(详解和落地)

RAG 即检索增强生成(Retrieval - Augmented Generation ),是一种结合检索技术和生成模型的人工智能方法。是一个开源的向量数据库, 面向的就是RAG使用场景,给出了七种RAG架构cheat sheet。和,每个阶段都有超多硬核技术加持!💡。

2025-02-07 17:58:10 268

原创 AI Agent:大模型应用的 “金钥匙”

近日,NVIDIA(英伟达)推出了一款开发安全、可信的 AI Agent 利器——NVIDIA NIM Al Guardrail 微服务,作为 NeMo Guardrails 软件工具系列的一部分,旨在帮助企业提高生成式AI应用的安全性、精准性和可扩展性。一时间,Agent再次被推上风口。从 2023 年大模型爆发,到 2024 年大模型落地,人们逐渐意识到,大模型不仅要“强”,更要“用”,Agent 智能体作为连接大模型和场景的中介,逐渐成为实现大模型应用的关键。

2025-02-07 17:27:09 771

原创 AI不只大模型?AI Agent到底有多强?

学术界和工业界对术语“AI Agent”提出了各种定义。其中,OpenAI将AI Agent定义为“

2025-02-07 17:02:30 413

原创 文科4个月转行「大模型」,月薪30K+的面试问了什么?

为每个人提供最有价值的技术赋能,2025年我们和赋范空间的小伙伴们一起来!发起的“Agentic 时代同行计划”会和我们的学员一起,分享自己的经历、经验,集结群体的智慧一起拥抱Agentic新时代!

2025-02-06 19:23:56 558

原创 5 分钟用满血 DeepSeek R1 搭建个人 AI 知识库(含本地部署)

看到这里,相信你已经找到最适合自己的 DeepSeek 个人知识库方案了。如果你和大多数人一样,选择使用官方 API ,那就不用再为性能和本地硬件资源发愁;如果你恰好有充足的算力和技术储备,本地部署也是个不错的选择。不过,在整个过程中,我想和你分享的不仅仅是这些技术细节。而是一个中国团队能做出世界级大模型,一个需要 +86 才能注册的大模型。很庆幸,我们能作为中国 AI 技术进步的见证人。当然,暂时的领先不是终点。但 DeepSeek 给我们带来的,是“中国也可以”这份信心。

2025-02-05 16:07:16 3308 3

原创 如何在本地计算机上安装和使用 DeepSeek R1

几天前,DeepSeek R1作为一个完全开源的模型亮相,意味着任何人都可以获取其底层代码,进行修改,甚至根据自己的需求进行微调。从技术角度来看,DeepSeek R1(通常缩写为R1)来源于一个叫做DeepSeek-V3的大型基础模型。研究团队通过结合高质量人工标注数据的监督微调(SFT)和强化学习(RL)来优化这个模型。结果是,一个能够处理复杂提示、揭示复杂问题背后推理步骤(有时比其他模型更透明)的聊天机器人,甚至可以在聊天界面中呈现代码进行快速测试。

2025-02-05 12:08:25 709

原创 推荐6个本地私有化运行的LLM模型工具

本文详细介绍了六种在本地运行大语言模型的优秀工具,它们各自具有独特的特点和优势,能够满足不同用户在隐私保护、性能优化、成本控制、应用场景拓展等方面的多样化需求。无论是个人开发者进行实验探索,还是企业用户构建安全高效的人工智能应用,本地 LLMs 工具都提供了一种可行的解决方案。通过合理选择和运用这些工具,用户可以在本地环境中充分发挥大语言模型的潜力,实现更安全、智能、个性化的人工智能体验。

2025-01-29 09:30:00 906

原创 【手把手教你】搭建私有大模型+私有知识库

就是把目前最流行的开源大模型部署到自己的电脑上,无需联网、也不用买会员,隐私可不会泄露,直接可以和AI聊天。就是你可以把你喜欢的资料统统喂给大模型,然后让AI查询你指定的材料,再来回复你的问题。若是在公司搭建这套组合,可以把公司的介绍、产品数据、销售数据等等都发给私有大模型,回复用户的信息就更有针对性。大模型搭建已经分享过了,就不在此赘述,直接进入主题,知识库搭建。AnthingLLM可以直接在其界面上对话,导入各种形式的资料。也可以把本地AI大模型和知识库做成接口API,在企业的其他应用里面去调用。

2025-01-28 21:30:00 1813 1

原创 大神 Sebastian 的高效微调大语言模型实战指南!

如果你熟悉像 BERT 这样的编码器风格语言模型(BERT:由 Devlin 等人于 2018 年提出的《BERT:用于语言理解的深度双向 Transformer 的预训练》),你可能知道,这类模型通常会有一个指定的分类 token,作为输入序列的第一个 token,如下图所示。BERT 论文中的注释图,来源于原始论文:https://arxiv.org/abs/1810.04805与 BERT 不同,GPT 是一种解码器风格的模型,采用了因果注意力机制(如之前的图 7 所示)。

2025-01-27 18:15:00 810

原创 万字长文 | Agentic RAG全面综述!

检索增强生成(RAG)概述检索增强生成(RAG)通过结合大语言模型(LLMs)的生成能力与实时数据检索,代表了人工智能领域的一项重大进展。虽然LLMs在自然语言处理方面表现出色,但对静态预训练数据的依赖往往导致响应过时或不完整。RAG通过动态检索相关外部信息并将其纳入生成过程,实现了上下文准确且最新的输出。RAG的核心组件RAG系统的架构整合了三个主要组件(图1):• 检索:负责查询外部数据源,如知识库、API或向量数据库。

2025-01-26 11:45:00 547

原创 《智谱GLM白皮书》:大模型“海平面”正在淹没人类能力“山头”丨AI时刻

文本生成指的是通过指令(Prompt)让大模型自动生成文字,包括电子邮件、短信、文章、新闻报道、社交媒体帖子等各种文本内容。相较传统以规则和模板的方式,大模型提供了完全不同的体验,这也是大模型最先跑通的商业模式。信息抽取是指将长段文字中的信息抽取出来并且以结构化的方式输出。相比起传统NLP的方式,大模型在泛化能力上有非常大的提升,并且开发成本要低2个数量级。

2025-01-25 11:15:00 795

原创 医疗医药领域发布的2024人工智能大模型十大典型应用案例,重塑产业新生态

在2024全球数字经济大会人工智能专题论坛中发布了“2024人工智能大模型场景应用典型案例”。本文整理了医疗医药领域发布的10个案例,通过展示人工智能大模型在医疗医药领域的落地应用,帮助解决实际问题,推动行业发展。在患者招募场景,医渡科技利用大数据+大模型技术打造智能筛选系统,可以为肿瘤类项目平均节省88.5%人工筛查成本,非肿瘤类项目平均节省69.8%人工筛查成本。该药物临床试验加速平台已在北京大学肿瘤医院完成了系统部署及推广工作,发挥实际效果。

2025-01-24 08:45:00 865

原创 国内外开源大模型(LLM)较为全面的整理

CodeFuse-13B 是基于 GPT-NeoX 框架训练的 13B 参数代码生成模型,能够处理 4096 个字符的代码序列。该模型在 1000B Token 的代码、中文、英文数据数据集上进行预训练,覆盖超过 40 种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k 数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。

2025-01-21 10:04:43 1273

原创 中国信通院发布《高质量大模型基础设施研究报告(2024年)》

(一)大模型基础设施概念与特性(二)大模型基础设施现状。

2025-01-21 09:37:33 962

原创 495篇参考文献!北交大清华等高校发布多语言大模型综述

虽然大模型取得突破性进展,但其在多语言场景下仍具有局限性,存在很大的改善空间。那么,大模型多语言能力到底什么水平?其发展又存在什么样的挑战?来自北京交通大学、加拿大蒙特利尔大学、加拿大滑铁卢大学和清华大学的研究团队发表了题为”A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers” (大模型的多语言能力综述)的论文,全面回顾了大模型在多语言能力上的最新进展与未来发展方向。

2025-01-18 11:29:32 916

原创 人工智能大模型技术在财务领域的应用

真正意义上的人工智能大模型发展历史并不长,但对人类社会的影响产生了积极作用。财务作为服务经济发展的重要组成部分,也将受到人工智能大模型的影响。目前,我国企事业单位已将光学字符识别、自然语言处理、语音识别、机器人流程自动化、专家系统、规则引擎、知识图谱、机器学习、深度学习等人工智能技术应用在会计核算、费用报销、财务报告、战略管理、预算管理、成本管理、营运管理、投融资管理、绩效管理、风险管理、管理会计报告、资金管理、司库管理、税务管理、审计管理等大财务领域。

2025-01-14 14:44:49 224

原创 大模型时代,AI客服和传统机器客服区别在哪?

目前在电商运营、零售商贸、金融服务甚至智慧政务等场景中,都已经能看到新一代AI客服的身影。不过新型智能客服技术的完善、商用场景拓展以及适老性等方面,依然面临一定的挑战。所以接下来几年,我们可能更快看到AI加持下的超级个体的诞生以及新质生产力推动下的组织效能和效益的改善。而当新一代AI客服在行业得到更广泛的应用,未来整个智能客服市场还将迎来进一步增长。

2025-01-10 17:49:24 578

原创 医学大型语言模型最新综述:技术、应用、可信度及未来方向 - 蚂蚁集团、浙大、香港中文大学等

随着大型语言模型(LLMs)的出现,医疗人工智能(AI)经历了重大的技术进步和范式转变,突显了LLMs简化医疗服务交付和提升患者结果的潜力。鉴于这种快速的技术进步,本调查追踪了医学大型语言模型(Med-LLMs)的最新进展,包括背景、关键发现以及主流技术,特别是从通用模型向医疗专业应用的演变。首先,我们深入探讨了Med-LLMs的基础技术,指出如何逐步适应并精炼通用模型以应对复杂的医疗任务。其次,调查了Med-LLMs在各类医疗保健领域的广泛应用,并对现有的Med-LLMs进行了最新回顾。

2025-01-10 17:13:43 842

原创 浅谈大模型 SFT 的实践落地:10 问 10 答

SFT 是“低端”的工作,但它与业务紧密相连。相较于难以实施且多数公司没资源训练的预训练,以及调试难度高的强化学习,SFT 可谓效果立竿见影,SFT在实际应用中更易显现成效。本文关注如何通过 SFT 逼近大模型的表现,既确保效果又兼顾模型的泛化能力,从而满足业务需求,实现大模型的有效落地。接下来,我将采用 10 问 10 答的分享分享一些经验,这些经验源自实际业务中的实践、社区的交流和 阅读过的 Paper 中,不断总结出来的个人心得,这些经验也会随时间不断更新。期待与大家的交流探讨。

2025-01-10 17:02:05 676

原创 Llama3 微调,增强知识图谱关系抽取(附微调数据集和代码)

通过使用 Llama3–70B 创建的合成数据集对 Llama3–8B 进行微调,增强关系抽取关系抽取(RE)是从非结构化文本中提取关系,以识别各种命名实体之间的联系的任务。它与命名实体识别(NER)一起完成,并且是自然语言处理流程中的一个基本步骤。随着大型语言模型(LLMs)的兴起,传统的监督方法涉及标记实体范围和分类它们之间的关系(如果有的话)的方法得到增强或完全被基于LLM的方法所取代Llama3 是生成式AI领域最新的重大发布基础模型有两种规模,8B和70B,预计将很快发布400B模型。

2025-01-07 15:41:59 838

原创 手把手带你零基础快速入门大模型微调

微调大模型通常需要非常高的电脑配置,比如GPU环境,相当于你在已经预训练好的基础上再对大模型进行一次小的训练,但是咱们很多伙伴的电脑配置可能有些困难,不过不用担心,本次咱们使用阿里魔塔社区提供的集成环境来进行,无需使用你自己的电脑配置环境,只需要一个浏览器即可。本次微调的大模型是零一万物的Yi开源大语言模型,当然微调其他大模型的过程和原理也有差不多。这里说明一下,阿里魔塔社区对于新用户提供了几十小时的免费GPU资源进行使用,正好学习一下大模型的微调。话不多说,直接开始。

2025-01-07 10:34:19 726

原创 不需要你会代码,小白也能做小程序,教你用coze做一个微信小程序之完结篇:如何使用数据库以及如何发布到小程序

在开始之前,大家可以预览一下本教程用coze做的小程序:如果你还没有看过前面两期的教程,需要先去看一下:1、coze搭建海报生成微信小程序之:页面搭建2、coze搭建海报生成微信小程序之:业务逻辑实现上一期内容,我们完成了首页的主要功能,海报生成页面。本期内容我们将完成另外一个“我的”页面的业务逻辑。

2025-01-04 17:27:31 903

原创 Agent 初学者指南:揭开 AI Agents 的面纱

AI Agent”这一术语的两个组成部分可以帮助我们更深入地理解其含义。我们先从相对简单的部分开始,即人工智能,也称为 AI。

2025-01-04 15:00:26 576

原创 趣评大模型理解能力——老头到底哭了还是乐了?

最近在刷抖音的时候刷到了一条冷笑话视频,视频中一个人面无表情的在讲冷笑话段子,其中一个段子只有一句话:“老头哭坏了是因为老头乐坏了”听完这个段子我先是愣住了一下,老头到底是哭了还是乐了?随后才反应过来原来段子中的“老头乐”是指平时在路上经常能见到的老人代步车,明白了笑点的我当时就笑的前仰后合,并把这个段子给身边的同事都讲了一遍,办公室里顿时充满了欢快的气氛。

2025-01-03 15:55:38 1009

原创 深入浅出LangChain与智能Agent:构建下一代AI助手

LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。‍我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。

2025-01-03 14:47:29 584

原创 LangChain实战 | OutputParser:让大模型输出从 “鸡肋” 变 “瑰宝” 的关键!

在大模型应用中,原始输出通常只是处理的开端,尽管这些输出能够提供很好的内容,但是根据下游使用场景,语言模型生成的原始文本很大概率需要被进一步处理才能使用。输出解析器(OutputParser)是 LangChain 中的一种工具,用于帮助将语言模型的文本响应转化为实用的格式化输出。

2025-01-03 14:13:23 748

原创 GitHub超火开发者路线图库有AI学习路线了!star数近30万

AI 大时代,每天都有层出不穷的新技术、新方法、新模型、新应用…… 想要去学却又似乎无从下手?!而这个资源库中有的还不仅仅是路线图,还有那些路线图中每一步中所需的资源,包括论文/文章、视频、教程、代码、示例等等。真的是不仅要领你进门,更要把你教会。资源链接:https://github.com/kamranahmedse/developer-roadmap官网:https://roadmap.sh。

2025-01-03 09:27:48 656

原创 小白学RAG:大模型 RAG 技术实践总结

RAG (Retrieval-Augmented Generation) 是一种结合信息检索与生成模型的技术。其主要目标是通过检索大量信息并使用生成模型进行处理,从而提供更加准确和丰富的回答。RAG技术在处理大规模文本数据时表现尤为出色,能够从海量信息中迅速找到相关内容并生成合适的响应。智谱RAG方案具体设计了如何将RAG技术应用到智能客服领域。方案包括以下几个关键环节:信息检索模块:从预先构建的知识库中快速找到与用户问题相关的内容。

2025-01-02 17:17:53 703

原创 2024 Github 十大最佳 RAG 框架

RAG 框架的世界多种多样,发展迅速,我们探讨的十个框架都具有独特的优势和功能。从全面、成熟的 Haystack 到 FlashRAG 和 R2R 等新兴的专业框架,总有一款解决方案适合各种需求和用例:项目的具体要求你需要的定制化程度和灵活性框架的可扩展性和性能特点围绕框架的社区规模和活动可用文档和支持的质量通过仔细评估这些因素并尝试使用不同的框架,你可以找到最适合你需求的 RAG 解决方案,帮助你构建更智能、更能感知上下文的人工智能应用程序。

2025-01-02 16:36:31 749

原创 2024 Github 十大最佳 RAG 框架

RAG 框架的世界多种多样,发展迅速,我们探讨的十个框架都具有独特的优势和功能。从全面、成熟的 Haystack 到 FlashRAG 和 R2R 等新兴的专业框架,总有一款解决方案适合各种需求和用例:项目的具体要求你需要的定制化程度和灵活性框架的可扩展性和性能特点围绕框架的社区规模和活动可用文档和支持的质量通过仔细评估这些因素并尝试使用不同的框架,你可以找到最适合你需求的 RAG 解决方案,帮助你构建更智能、更能感知上下文的人工智能应用程序。

2025-01-02 14:05:22 885

原创 GraphRAG+Langchain实现大模型知识图谱

🔌理解GraphRAG其实并不难,可以理解为由两个主要模块组成:1. 向量检索(Local Search)2. 局部知识图谱社区检索(Global Search)⚙️所谓 GraphRAG 一定程度上可以理解为使用 LLM 生成知识图谱,在对复杂信息进行文档分析时可显著提高问答性能,尤其是在处理私有数据时。GraphRAG构建流程主要是以下三个:1. 图表作为内容存储:提取相关文档块并要求 LLM 使用它们进行回答。这种变体需要一个包含相关文本内容和元数据的 KG,以及与矢量数据库的集成。

2024-12-27 15:51:50 886

原创 HuatuoGPT:一个突破性的中文医疗大模型,让AI成为你的私人医生!

HuatuoGPT通过创新的混合训练策略和AI反馈强化学习机制,成功实现了一个兼具专业性和亲和力的中文医疗大语言模型。这不仅为解决医疗资源分配不均的问题提供了可能的解决方案,也为未来医疗AI的发展指明了方向。其开源的特性更有助于推动整个医疗AI领域的进步。HuatuoGPT是一个专注于医疗咨询场景的中文大语言模型。最新重要动态:论文已被EMNLP 2023收录HuatuoGPT-II版本已发布已开源7B和13B版本模型权重在线demo已上线:https://www.huatuogpt.cn/

2024-12-27 10:19:40 983

原创 大模型技术与机器人技术的应用融合“基于大模型的智慧零售平台”

随着科技的飞速发展,人工智能技术已经成为推动各行业转型升级的重要引擎,特別是大模型技术,如ChatGPT和Llama等,在各行各业的应用越来越深入和广泛,不仅提高了效率,还为用户带来了更加个性化的服务和产品。在智慧零售领域,大模型技术具有数据处理能力强、预测准确度高、智能化水平高等显著优势。通过构建庞大的数据集和复杂的算法模型,大模型能够实现对市场趋势的准确预测以及商品库存的智能管理,同时能够根据消费者的购物历史和偏好,提供定制化的购物体验,从而提高销售额和顾客满意度。

2024-12-26 17:44:11 521

原创 大模型专题:多模态大语言模型领域进展分享(2024)

大语言模型(LLM)发展火热,但存在无法处理多模态输入等局限,多模态大语言模型(MLLM)应运而生。MLLM在工业和学术界备受关注,已有众多模型涌现。其能完成传统视觉/多模态任务,如图片描述、计数、定位,也能处理复杂复合型任务,像图表推理、基于视觉感知理解任务。MLLM常用架构含编码器、连接器和大语言模型,数据与训练方法包括模态对齐训练和指令微调训练,评估方式有常规任务Benchmark和专门Benchmark。

2024-12-26 15:10:44 815

原创 30岁,零基础小白,计划转行前和AI大模型们聊了聊天

30岁,双非,本科,工商管理专业,计划转行至人工智能/无人机/半导体/新能源等行业,无任何对口工作_

2024-12-26 11:52:43 974

原创 自己搭建专属AI:Llama大模型私有化部署

AI新时代,提高了生产力且能帮助用户快速解答问题,现在用的比较多的是Openai、Claude,为了保证个人隐私数据,所以尝试本地(Mac M3)搭建Llama模型进行沟通。本文演示了通过不同手段来运行Llama模型,来达到本地使用LLM的目的。

2024-12-24 18:07:36 728

原创 AI时代还需要产品经理吗?需要什么样的?

在人工智能技术迅速发展的今天,我们不禁要思考,产品经理这个角色是否仍然重要?AI时代是否还需要他们?首先,我们必须认识到,AI虽然具有强大的数据处理和学习能力,但它并不能完全取代产品经理的角色。产品经理作为连接用户需求和技术实现的桥梁,他们负责洞察市场趋势,分析用户需求,并将这些需求转化为具体的产品规划和设计方案。AI虽然可以辅助产品经理进行数据分析,但无法替代他们对市场趋势的敏锐洞察和对用户需求的深刻理解。其次,产品经理在团队协作和项目管理方面发挥着重要作用。

2024-12-23 15:11:15 969

原创 AI浪潮中,产品经理如何找到自己的新机会?

在数字化的浪潮里,AI技术正以汹涌之势席卷而来,逐渐渗透到产品经理的工作疆域,这既带来了前所未有的机遇,也抛出了诸多挑战。这涵盖了对业务需求的精准理解、与客户及业务人员的顺畅沟通,以及将业务需求巧妙转化为产品需求的能力。与此同时,项目管理、团队协作、市场分析等技能也是必备项,这些既是互联网产品经理的核心竞争力所在,也是AI产品经理的根基。机器学习作为人工智能的关键分支,旨在通过让计算机学习数据来达成人工智能;而深度学习则是机器学习的子领域,它借助模拟人脑神经元结构,对复杂数据展开深度剖析与学习。

2024-12-23 14:51:30 876

原创 AI产品经理需具备的能力

在当今科技飞速发展的时代,人工智能(AI)正以前所未有的速度改变着我们的生活和工作方式。AI 产品如雨后春笋般涌现,从智能语音助手到图像识别软件,从智能推荐系统到自动驾驶汽车,这些产品背后都离不开 AI 产品经理的精心策划与推动。那么,AI 产品经理究竟需要具备哪些能力,才能在这个充满挑战与机遇的领域中脱颖而出呢?

2024-12-23 14:40:26 627

原创 逆天!吴恩达+Open AI打造《大模型通关指南》

LLM(大型语言模型)正在逐步改变我们的生活。对于开发者来说,,实现更创新、更实用的功能,是一项迫切需要学习的关键技术。吴恩达老师与OpenAI合作推出的大模型系列教程,从开发者在大型模型时代的必备技能出发,深入浅出地介绍了本系列教程中,针对初学者,浅显易懂地介绍了如何构建Prompt并利用OpenAI提供的API实现总结、推断、转换等多种常用功能,是学习LLM开发的经典教程;则面向希望基于LLM开发应用程序的开发者,简洁明了地系统全面介绍了如何利用ChatGPT API打造完整的对话系统;

2024-12-18 17:44:44 359

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除