有没有被上面这长的代码吓到?
不用紧张,这只是一段看似复杂的简单逻辑,我们来逐一分解一下:
逻辑分解
第一部分SparkSession和sparkContext我们就不做描述了,每一pyspark代码总以这两个结构开始,主要是为pyspark定义运行环境。
1) 数据收集提取部分:
数据收集提取是我们将数据从数据库中提取到spark环境中进行运算。
我们假定表中的数据结构为:
需要做PCA的列为C列,因此将C列行变向量,为简化代码,我们需要尽可能的将数据处理压缩在Hive阶段,俗话说的好:SQL写的好,python写的少,毕竟,python的运行效率并不乐观。
数据处理的SQL如下:
SELECT a, b, collect_list(c)FROM tableGROUP BY a, b
经过这一处理,数据结构变成了:
通过spark.SQL函数提取后,我们在spark环境中看到的数据结构即为上图数据。
由于笔者测试环境没有hive环境,因此采用了折中的方式,直接列出数据内容,如上代码:
[[1,3,[2,3,5,6,7,6,4,6]],[4,6,[5,5,6,7,6,3,1,6]],[7,9,[8,5,3,5,6,7,6,8]]]
2) 将list转化为向量:
数据提取到spark环境后就需要将数据中的list数据转化成vector结构,因为主成分分析需要输入的是vector数据结构,而不是list结构。
好在pyspark中提供了向量化的工具VectorAssembler,这一过程相对比较复杂,需要按照VectorAssembler的格式梳理好数据结构,然后再将数据输入其中进行transform操作:
length = len(data.select('b').take(1)[0][0])assembler_exploded = VectorAssembler(inputCols=["b[{}]".format(i) for i in range(length)],outputCol="b_vector")df_exploded = data.select(data["a"], *[data["b"][i] for i in range(length)])converted_df = assembler_exploded.transform(df_exploded)final_df = converted_df.select("a", "b_vector")
得到的final_df即为转化之后的向量。
3) PCA的计算:
向量转化完成后,PCA的训练呼之欲出了,pyspark继承了sklearn高度封装的特点,使用起来非常便利,对应的代码逻辑为:
pca = PCAml(k=7, inputCol="b_vector", outputCol="pca")model = pca.fit(final_df)transformed = model.transform(final_df)print(transformed.show())
定义PCA,训练,然后转化,整个过程简洁高效,运算完成的数据会呈现在数据表新的列中:
4) 将向量转化成list:
数据总是需要以较为简洁的数据结果存储,以方便后期特征的处理和应用,越是高级的数据特性对应的应用范围越小,因此,我们在进行数据存储时将vector结构转化成list结构并拆分到各个列中:
def extract(row):return (row.a,) + (row.b_vector,) + (row.pca,) + tuple(row.pca.toArray().tolist())transformed_list = transformed.rdd.map(extract).toDF(["a", "b_vector", "pca"])print(transformed_list.show())
经过上面的计算,我们得到的结果为:
由于hive表中列名很少用“_”作为列名首字母,所以需要将列名修改一下,使用的函数为selectExpr,操作完成后形成的最终结构为:
5) 将数据存储到hive表中:
形成的数据结构可以直接被存储到hive数据库中,而对应的存储过程为:
try:transformed_list.write.format("orc").mode("append").saveAsTable("tmp_db.table")except Exception as e:raise e
pyspark中的存储也是非常简单的,整个流程可以看出,pyspark在与hive的交互过程中优化的非常简单,操作起来也非常的高效。
经过上面的整个步骤,你有没有对pyspark有一个初步的认知呢?
或者有哪些常用的应用场景,欢迎大家来聊,一起探索高效的写法~
欢迎大家关注公众号:
来都来了,点个关注再走呗~