以形助数,为数代言
——关于《小数乘小数》的思考
《小数乘小数》是人教版五年级上册第一单元的例3,教材用“给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克”引发思考:2.4×0.8、1.92×0.9怎么计算。这些素材从生活中提取,一位小数乘一位小数、两位小数乘一位小数蕴含在一道题中,有助于学生细分问题、有序思考、分步解决,但在实际教学中,学生往往将小数点的位置点错。
第一次思考:教学《小数乘小数》时,因为有了小数乘整数的学习经验,学生很容易想到转化的方法,将两个因数都转化成整数进行计算,但是学生对因数与积的小数位数之间的关系是并不理解的。学生在四年级学习积的变化规律时,接触较多的是“一个因数不变,另一个因数乘几或除以几(0除外),积也乘或除以相同的数”,他们对两个因数都扩大的情况,接触较少,所以,对小数乘小数的算理缺乏形象的感知、深入的理解。第一次教学中,教师利用面积单位之间的进率和积的变化规律帮助学生理解算理,学生被动接受、机械记忆;第二次教学中,教师顺势而为,数形结合,学生主动探究、深入理解。
第一次教学片段:
1、唤起已有经验:
(1)先填表,再填空
因数 | 3 | 30 | 30 | 300 |
因数 | 2 | 2 | 20 | 20 |
积 |
一个因数不变,另一个因数乘10,积( )。
一个因数乘10,另一个因数也乘10,积( )。
一个因数乘100,另一个因数乘10,积( )。
2、探究计算方法:
教师出示例题:给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克,一共需要多少千克油漆?
学生列出算式后,师:这是我们今天学习的小数乘小数(板书课题)
教师问:2.4×0.8怎么计算?想一想小数乘整数的计算方法。
生1:可以利用转化的方法,把小数转化成整数:2.4米=24分米,0.8米=8分米,24×8=192(平方分米)=1.92平方米,所以2.4×0.8=1.92(平方米)。
师启发:如果列竖式计算,应该怎么计算?
学生们试着笔算,主要出现了下面两种情况,而且绝大多数学生使用了错误的算法一:
教师结合开课的表格及填空继续启发:把2.4×0.8看作24×8计算,一个因数乘10,另一个因数又乘10,积乘100,所以,现在24×8的积是原来2.4×0.8的积的多少倍?
生齐:100倍!
师:那么要怎样才能得到原来的积?
生齐:除以100。
师:所以哪个算法是正确的?
生:第二个算法是正确的。
第二次思考:
教师巧妙的设置了3×2、30×2、30×20、300×20四道算式,唤醒了学生的积的变化规律的学习经验,补上了两个因数都发生变化积的变化情况的感知,但这两条规律的发现是仓促的、机械的、不完整的,难免有“临时抱佛脚”之嫌。所以随后用竖式计算时,绝大多数学生出现错误的算法一,教师启发后也不能很快找到错误原因,学生之所以在积的小数位数的确定上出现错误,根源均在于此。
第二次教学片段:
1、以形助数,铺垫算理:
师:我热爱瑜伽运动,前几天我买了一个长是0.3米,宽是0.2米的长方形弹力带(出示弹力带),如果我把弹力带的长拉到3米、宽拉到2米,现在弹力带的面积是多少?现在的面积是原来的多少倍?(师拉弹力带,让学生看到长、宽均在扩大)
生:现在的面积是3×2=6(平方米)
生1:现在面积是原来的10倍。
生2:不对,现在面积是原来的100倍。
生上台用弹力带进行演示和辩论。
师出示课件:
师板书:
师:弹力带的长扩大10倍,宽也扩大10倍,面积扩大到原来的多少倍?
如果我继续拉弹力带,长扩大100倍,宽扩大10倍,面积扩大到原来的多少倍?
你发现了什么规律?
师生总结出规律:长扩大a倍,宽扩大b倍,面积扩大a×b倍。
师:面积是长乘宽的积,长是一个因数,宽是另一个因数,大家的思维再全面些,这个规律涵盖的范围就更大。
生:一个因数扩大a倍,另一个因数扩大b倍,积扩大a×b倍。
师:用这个规律,我们就可以反推弹力带原来的面积0.3×0.2的积。这是我们今天学习的小数乘小数(板书课题)
2、以数解形,明晰算理:
教师问:0.3×0.2怎么计算?小组合作,探讨研究。
第一组:我们想3×2=6(平方米),那么把6÷100=0.06(平方米)就可以求出原来的面积。
师:为什么用6除以100?
生:因为原来的面积扩大100倍后是现在的面积,那么只要把现在的面积除以100就是原来的面积。
师拿着弹力带拉大后又缩小:现在的面积扩大到原来的100倍,要想得到原来的面积,就要除以100。
第二组:现在弹力带的长拉到原来的10倍,宽拉到原来的10倍,面积是原来的100倍,那么原来的面积是现在的
师:你们能不能用箭头表示出来?
生上台画图:
师:能否把思考过程用竖式表示出来?
生试着在本子上笔算:
师:积的小数点位置与因数的小数点位置一致吗?为什么不一致?
生:一个因数扩大10倍,另一个因数也扩大10倍,积扩大100倍,如果想得到原来的积,就要除以100。所以积的小数点的位置与因数小数点的位置不一致。
师:有没有别的方法计算0.3×0.2?
生:可以用转化的方法,0.3米=3分米,0.2米=2分米,3×2=6(平方分米)=0.06平方米。
师:用转化单位的方法,我们再次验证了0.3×0.2=0.06。这两种方法,你更喜欢哪一种?为什么?
生:我更喜欢列竖式,因为竖式更简洁。
师:在小数乘小数的计算中,你认为哪一步容易出错,需要注意什么?
生:积的小数点容易点错位置,一定要注意因数的小数点位置不一定是积的小数点位置。
师:你们会计算下面的小数乘法吗?
师出示教材上的例题:给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克,一共需要多少千克油漆?
学生笔算。
第三次思考:
1、以形助数,为数代言:面对抽象的算理,教师要提供丰富的直观素材,给学生一个“悟”的途径,帮助学生积累各种直观感知,经历直观——半直观——抽象的学习过程,弹力带的长、宽均能扩大,学生能初步感知面积的扩大与长、宽均有关;课件上0.3×0.2与3×2的直观对比,学生能进一步感知面积之间“100倍”的关系;学生通过教师的板书梳理出长、宽、面积之间的变化规律。
2、见数思形,直击错误:由于小数加减法中,和、差的小数点的位置与加数、被减数、减数的小数点的位置是一致的,这种学习经验很容易对小数乘法造成负干扰,第二次教学的教学设计中,教师希望通过长方形面积的变化,让学生今后见到小数乘小数,脑海里浮现的是长×宽,想到的是:长扩大a倍,宽扩大b倍,面积扩大a×b倍。在后面学生自己的研究探讨中,学生确实是用这个规律来理解小数乘法的算理的,有效的排除了负面干扰。