两位小数乘两位小数竖式_以形助数,为数代言 ——关于小数乘小数的思考

以形助数,为数代言

——关于《小数乘小数》的思考

bd0b2184c2c6efc8b0d243178ca2e86c.png

    《小数乘小数》是人教版五年级上册第一单元的例3,教材用“给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克”引发思考:2.4×0.8、1.92×0.9怎么计算。这些素材从生活中提取,一位小数乘一位小数、两位小数乘一位小数蕴含在一道题中,有助于学生细分问题、有序思考、分步解决,但在实际教学中,学生往往将小数点的位置点错。

第一次思考:教学《小数乘小数》时,因为有了小数乘整数的学习经验,学生很容易想到转化的方法,将两个因数都转化成整数进行计算,但是学生对因数与积的小数位数之间的关系是并不理解的。学生在四年级学习积的变化规律时,接触较多的是“一个因数不变,另一个因数乘几或除以几(0除外),积也乘或除以相同的数”,他们对两个因数都扩大的情况,接触较少,所以,对小数乘小数的算理缺乏形象的感知、深入的理解。第一次教学中,教师利用面积单位之间的进率和积的变化规律帮助学生理解算理,学生被动接受、机械记忆;第二次教学中,教师顺势而为,数形结合,学生主动探究、深入理解。

第一次教学片段:

1、唤起已有经验:

(1)先填表,再填空

因数

3

30

30

300

因数

2

2

20

20

一个因数不变,另一个因数乘10,积(    )。

一个因数乘10,另一个因数也乘10,积(   )。

一个因数乘100,另一个因数乘10,积(     )。

2、探究计算方法:

教师出示例题:给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克,一共需要多少千克油漆?

学生列出算式后,师:这是我们今天学习的小数乘小数(板书课题)

教师问:2.4×0.8怎么计算?想一想小数乘整数的计算方法。

1:可以利用转化的方法,把小数转化成整数:2.4米=24分米,0.8米=8分米,24×8=192(平方分米)=1.92平方米,所以2.4×0.8=1.92(平方米)。

师启发:如果列竖式计算,应该怎么计算?

学生们试着笔算,主要出现了下面两种情况,而且绝大多数学生使用了错误的算法一:

99b50fbb80ad37df243a6cc771b61269.png

教师结合开课的表格及填空继续启发:把2.4×0.8看作24×8计算,一个因数乘10,另一个因数又乘10,积乘100,所以,现在24×8的积是原来2.4×0.8的积的多少倍?

30d84957a0950877187ce21266b1682d.png

生齐:100倍!

师:那么要怎样才能得到原来的积?

生齐:除以100。

师:所以哪个算法是正确的?

生:第二个算法是正确的。

第二次思考:

教师巧妙的设置了3×2、30×2、30×20、300×20四道算式,唤醒了学生的积的变化规律的学习经验,补上了两个因数都发生变化积的变化情况的感知,但这两条规律的发现是仓促的、机械的、不完整的,难免有“临时抱佛脚”之嫌。所以随后用竖式计算时,绝大多数学生出现错误的算法一,教师启发后也不能很快找到错误原因,学生之所以在积的小数位数的确定上出现错误,根源均在于此。

第二次教学片段:

1、以形助数,铺垫算理:

师:我热爱瑜伽运动,前几天我买了一个长是0.3米,宽是0.2米的长方形弹力带(出示弹力带),如果我把弹力带的长拉到3米、宽拉到2米,现在弹力带的面积是多少?现在的面积是原来的多少倍?(师拉弹力带,让学生看到长、宽均在扩大)

生:现在的面积是3×2=6(平方米)

1:现在面积是原来的10倍。

2:不对,现在面积是原来的100倍。

生上台用弹力带进行演示和辩论。

师出示课件:

7351a831a9b7eb559c7f6042e4d68284.png

师板书:

33f8e6ab5db608707a9003f65380958c.png

师:弹力带的长扩大10倍,宽也扩大10倍,面积扩大到原来的多少倍?

如果我继续拉弹力带,长扩大100倍,宽扩大10倍,面积扩大到原来的多少倍?

你发现了什么规律?

师生总结出规律:长扩大a倍,宽扩大b倍,面积扩大a×b倍。

师:面积是长乘宽的积,长是一个因数,宽是另一个因数,大家的思维再全面些,这个规律涵盖的范围就更大。

生:一个因数扩大a倍,另一个因数扩大b倍,积扩大a×b倍。

师:用这个规律,我们就可以反推弹力带原来的面积0.3×0.2的积。这是我们今天学习的小数乘小数(板书课题)

2、以数解形,明晰算理:

教师问:0.3×0.2怎么计算?小组合作,探讨研究。

第一组:我们想3×2=6(平方米),那么把6÷100=0.06(平方米)就可以求出原来的面积。

师:为什么用6除以100?

生:因为原来的面积扩大100倍后是现在的面积,那么只要把现在的面积除以100就是原来的面积。

师拿着弹力带拉大后又缩小:现在的面积扩大到原来的100倍,要想得到原来的面积,就要除以100。

第二组:现在弹力带的长拉到原来的10倍,宽拉到原来的10倍,面积是原来的100倍,那么原来的面积是现在的

师:你们能不能用箭头表示出来?

生上台画图:

80b682a8c085aa48b0349ed5b989b868.png

师:能否把思考过程用竖式表示出来?

生试着在本子上笔算:

48d5df00e1dc61c56c2f23a089eaea84.png

师:积的小数点位置与因数的小数点位置一致吗?为什么不一致?

生:一个因数扩大10倍,另一个因数也扩大10倍,积扩大100倍,如果想得到原来的积,就要除以100。所以积的小数点的位置与因数小数点的位置不一致。

师:有没有别的方法计算0.3×0.2?

生:可以用转化的方法,0.3米=3分米,0.2米=2分米,3×2=6(平方分米)=0.06平方米。

师:用转化单位的方法,我们再次验证了0.3×0.2=0.06。这两种方法,你更喜欢哪一种?为什么?

生:我更喜欢列竖式,因为竖式更简洁。

师:在小数乘小数的计算中,你认为哪一步容易出错,需要注意什么?

生:积的小数点容易点错位置,一定要注意因数的小数点位置不一定是积的小数点位置。

师:你们会计算下面的小数乘法吗?

师出示教材上的例题:给长2.4米、宽0.8米的长方形宣传栏刷油漆,每平方米要用油漆0.9千克,一共需要多少千克油漆?

学生笔算。

第三次思考:

1、以形助数,为数代言:面对抽象的算理,教师要提供丰富的直观素材,给学生一个“悟”的途径,帮助学生积累各种直观感知,经历直观——半直观——抽象的学习过程,弹力带的长、宽均能扩大,学生能初步感知面积的扩大与长、宽均有关;课件上0.3×0.2与3×2的直观对比,学生能进一步感知面积之间“100倍”的关系;学生通过教师的板书梳理出长、宽、面积之间的变化规律。

2、见数思形,直击错误:由于小数加减法中,和、差的小数点的位置与加数、被减数、减数的小数点的位置是一致的,这种学习经验很容易对小数乘法造成负干扰,第二次教学的教学设计中,教师希望通过长方形面积的变化,让学生今后见到小数乘小数,脑海里浮现的是长×宽,想到的是:长扩大a倍,宽扩大b倍,面积扩大a×b倍。在后面学生自己的研究探讨中,学生确实是用这个规律来理解小数乘法的算理的,有效的排除了负面干扰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值