主要内容来源为《R语言核心技术手册》。
对线性模型假设的检验car包中的ncvTest()函数可以用来检验异方差性,lmtest包中的bptest()函数可以实现同样的功能。
car包中的durbin.watson()函数可以用来检验自相关性,lmtest包的dwtest()函数可以实现同样的功能。
car包中的vif()函数可以用来计算方差膨胀因子,从而用来检验共线性问题。
处理异方差或者异常值问题当面对异方差或者异常值问题时,可以采用阻力回归或者稳健回归。
MASS包的lqs()函数可以做阻力回归。
MASS包的rlm()函数可以做稳健回归,robust包的lmRob()函数也可以做稳健回归,两者的估计方式有差异。
对自变量有处理能力的回归方法通过step()函数可以进行逐步回归,MASS包的stepAIC()函数可以实现相同的功能。
MASS包的lm.ridge()函数可以做岭回归。
lars包的lars()函数可以做LASSO回归,也可以做最小角回归。
elasticnet包的enet()函数可以做弹性网络。岭回归和LASSO回归都是弹性网络模型家族的成员。
pls包的pcr()函数可以做主成分回归。
pls包的plsr()函数可以做偏最小二乘回归。