r语言实现岭回归_R语言中回归模型的一些总结2

本文介绍了R语言中用于回归分析的多种方法,包括使用car包检验异方差性和自相关性的ncvTest()、durbin.watson()函数,处理共线性问题的vif()函数,以及解决异常值问题的阻力回归和稳健回归。此外,还探讨了MASS包中的lqs()和rlm()函数,以及robust包的lmRob()函数。通过step()和stepAIC()函数进行逐步回归,lm.ridge()进行岭回归,lars()进行LASSO回归,enet()实现弹性网络,而pcr()和plsr()分别用于主成分和偏最小二乘回归。
摘要由CSDN通过智能技术生成

主要内容来源为《R语言核心技术手册》。

对线性模型假设的检验

car包中的ncvTest()函数可以用来检验异方差性,lmtest包中的bptest()函数可以实现同样的功能。

car包中的durbin.watson()函数可以用来检验自相关性,lmtest包的dwtest()函数可以实现同样的功能。

car包中的vif()函数可以用来计算方差膨胀因子,从而用来检验共线性问题。

9be070f299dd59d19ed8b4b8380cc07d.png处理异方差或者异常值问题

当面对异方差或者异常值问题时,可以采用阻力回归或者稳健回归。

MASS包的lqs()函数可以做阻力回归。

MASS包的rlm()函数可以做稳健回归,robust包的lmRob()函数也可以做稳健回归,两者的估计方式有差异。

9be070f299dd59d19ed8b4b8380cc07d.png对自变量有处理能力的回归方法

通过step()函数可以进行逐步回归,MASS包的stepAIC()函数可以实现相同的功能。

MASS包的lm.ridge()函数可以做岭回归。

lars包的lars()函数可以做LASSO回归,也可以做最小角回归。

elasticnet包的enet()函数可以做弹性网络。岭回归和LASSO回归都是弹性网络模型家族的成员。

pls包的pcr()函数可以做主成分回归。

pls包的plsr()函数可以做偏最小二乘回归。

9be070f299dd59d19ed8b4b8380cc07d.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值