狄利克雷卷积_算法学习笔记(35): 狄利克雷卷积

这篇笔记完全是数学内容,但它是之后一些算法的基础。

所谓狄利克雷卷积,是定义在数论函数(

的函数)间的一种二元运算,可这样定义:

也常常等价地写作:

为了之后讨论方便,先定义一些常用的数论函数的符号:单位函数

幂函数

. 当

时为恒等函数

,当

时为常数函数

除数函数

,当

时为因数和函数

,当

时为因数个数函数

值得注意的是,这些函数都是所谓的积性函数,即满足

,且若

互质,则有

. 其中前两者还是完全积性函数,它们不需要满足

互质的条件也符合等式。

积性函数之间的狄利克雷卷积有一个重要的性质:若

是积性函数,则

也是积性函数

首先

,然后设

互质,则有:

.

注意到

由于

互质,

的因数都可以唯一地表示为

的某个因数与

的某个因数的乘积,即上式可表示为

。这便证明了

.

根据狄利克雷卷积的定义,我们可以立刻得到一些数论函数之间的关系。

除数函数与幂函数

根据定义,我们有:

所以:

,即

欧拉函数与恒等函数

由于:

时(

为质数),有:

.

现在令

为任意正整数,它可以被分解为

,由于

是积性函数,必然有

. 所以

,即:

我们来证明狄利克雷卷积的一些性质:

交换律

结合律

关于第四个等号为什么成立,其实把连加式展开就很清晰了:

其中:

满足

,而

又满足

,所以

对每一项都成立。这也穷尽了将

分解成三个正整数的积的所有可能。

对函数加法的分配律

单位元

(注意仅在

不等于

)

所以单位函数

是狄利克雷卷积的单位元。

逆元

假设

,则称

的狄利克雷逆元(Dirichlet inverse,或译狄利克雷逆),记作

,显然有:

.

,这说明

存在迪利克雷逆元的必要条件是

.

我们又有:

. 类似地,还可以求出

等,合理猜测下面这个函数即为

分类讨论:

时,

时:

所以

就是

,这是一个递归的定义。

实际上,从抽象代数角度看,取狄利克雷卷积为乘法,普通函数加法为加法,则数论函数集构成一个整环。注意它不构成一个域,因为并不是每个非零元素(这里的零元是

)都有逆元,而必须要满足

需要指出,积性函数必然存在逆元(因为

),且逆元仍是积性函数。

根据逆元的定义

, 有

,则对任意正整数

现在设

互质,且对

(不同时取等号),已证明

是积性的,则:

这可以分为前后两部分:

对于前半部分:

对于后半部分:

于是:

.

是积性函数。

最后来看一个特殊的函数:常数函数

的逆元,我们将其称为莫比乌斯函数,定义为:

其中的

均为质数,也就是说,仅当

存在一个因数是完全平方数时

. 用狄拉克雷逆元的定义不难对此进行验证,注意

是积性函数,且容易证明

.

莫比乌斯函数在数论中有重要的作用,例如莫比乌斯反演等。下篇笔记将会讲解。Pecco:算法学习笔记(目录)​zhuanlan.zhihu.com

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值