自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

锐多宝的地理空间

GIS、RS、Google earth engine、PIE Engine、Paddle

  • 博客(196)
  • 资源 (6212)
  • 收藏
  • 关注

原创 1950-2024年中国区域的积温数据(大于10°)

本文介绍了基于ERA5-Land数据集的中国区域1950-2024年积温数据的制作过程。积温(GDD)是衡量热量积累的指标,常用于评估植物生长需求。数据来源为ERA5-Land每日聚合数据集,分辨率为11132米。计算方法以10°C为基准温度,计算每日平均温度与基准温度的差值,若大于0则记录该值,否则记为0。年积温为一年中日积温的累加,多年平均积温为1950-2024年年积温的平均值。文章还提供了GEE代码,用于计算和导出2014-2024年的年积温图像及11年平均积温图像,并提供了数据下载链接。

2025-05-13 11:30:44 372

原创 QGIS+mcp的安装和使用

uv是一个由Rust语言编写的python包管理工具,旨在提供比传统工具(如 pip)更高效的依赖管理和虚拟环境操作。对话打开mcp选项,命令:对图层centroids.shp做一个核密度分析并且加载到qgis中。然后启动mcp的服务器。

2025-04-28 23:09:30 731

原创 欧空局的P 波段雷达卫星即将升空

在2025年4月29日,ESA将通过Vega-C运载火箭在法属圭亚那库鲁航天中心发射Biomass卫星,这将是首颗搭载P波段(约435 MHz)合成孔径雷达的地球探测器,旨在首次从空间精确测量全球森林生物量及碳储量,为气候变化研究和碳循环模型提供关键数据。Biomass卫星将为欧盟的哥白尼(Copernicus)计划提供数据,但它并不属于Sentinel系列卫星。Biomass是ESA“地球探测者”(Earth Explorer)计划中的第七个任务,专注于科学研究,特别是森林碳储量的长期监测。

2025-04-27 12:21:01 622

原创 数据集——全球水电站和水库数据集

本研究针对气候变化和干旱对水电潜力影响的分析需求,聚焦于整合水电厂属性(如类型、水头)与水库特征(如面积、库容)的协同数据,但现有数据集存在严重碎片化问题:主流水电厂数据集(如WRI全球水电厂数据集)普遍缺失水库属性,而水库数据集(如GranD、GeoDAR)则缺乏水电厂关键参数,导致水电系统模拟、气候变化脆弱性评估及跨流域调水工程研究缺乏统一的数据基础。为此,本文提出通过整合全球开源水电厂与水库数据。

2025-04-23 16:25:45 862

原创 全球30米分辨率数字地形模型(GEDTM30)

针对现有全球数字高程模型(DEM)分辨率低(多为30 m)、植被/人工对象残留及沿海/高海拔地区精度不足等核心问题,本研究提出全球-局部迁移学习框架,旨在生成1 arc sec(约30 m)分辨率的无空隙全球DEM(GEDTM30),并提取坡度、曲率、汇水面积等15类地表形态与水文参数。研究整合多源异构数据(光学影像、雷达、激光雷达),通过中位数滤波与异常值剔除生成初始DEM,结合ICESat-2(20亿点)和GEDI(10亿点)激光雷达数据构建训练样本,利用GNSS站数据验证模型精度。

2025-04-23 16:25:07 966

原创 全球牛、羊、山羊和马匹分布数据集(2000-2022)

畜牧业作为全球粮食安全、经济发展和生态环境的重要支柱,其分布格局与人类活动、自然资源及气候变化密切相关。然而,现有牲畜分布数据普遍存在分辨率低(多为10 km)、更新滞后等问题,难以满足精细化研究与管理的需求。本研究针对这一挑战,首次整合全球198个国家的次国家级牲畜普查数据(覆盖86%的潜在牧区)与307层时空栅格数据(包括NDVI、气温、GDP、人口密度等),构建了2000-2022年全球牛、羊、山羊和马匹的1 km分辨率年度密度地图,并创新性地引入95%概率预测区间以量化不确定性。研究采用。

2025-04-23 16:23:32 603 1

原创 mozbc安装、使用与自定义气体的教程

mozbc用于生成气象化学模型WRF-CHEM化学初始场wrfinput和边界条件wrfbdy的NCAR官方工具。简单来说,就是一个插值和填充wrfinput和wrfbdy的NC数据的工具。那为什么要用mozbc?不就是把初始场的值插值到边界上吗?也可以自己写插值代码啊,但一般比不上mozbc。mozbc 能自动计算并填充这些趋势项,确保边界条件的完整性;mozbc 可以根据模拟时间段进行时间插值;mozbc 能根据压力层数据,处理全球模型与 WRF 模型之间的垂直坐标转换;

2025-03-09 19:25:18 947

原创 MOZBC安装·报错

报错:In function nf_put_att_text_‘: nf_attio.F90:(.text+0x1b5): undefined reference to nc_put_att_text’打开make_mozbc,将。

2025-03-05 14:58:59 244

原创 neural_gcm模型进行气象预测教程

NeuralGCM (General circulation models)是Google开发的一种新型的天气和气候模型,它结合了传统的物理建模与机器学习技术,相关论文于2024年发表在nature上。它既可以做短期的天气预报,也可以做长期的气候预测。NeuralGCM是一个精度非常高的AI气象模型(参考论文),安装简单(三个pip就可以安装成功了),上手容易(对比传统数值模型),效率对比传统模型(比如WRF)快得多。‍‍。

2025-02-15 18:07:14 1095

原创 想到一种写文献综述论文的办法

anything LLM以及RAGFLOW等工具可以融合本地文档(pdf、word等),这样就能把几百篇论文的pdf文件存到知识库中,搭配大模型对关键字进行文本和向量等搜索。RAGFLOW我还没试,但看介绍可能更加强大,可以录入Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据、网页等文件。写文献综述相关论文大概率涉及到几百篇文献,脑子再好,也记不住所有论文的详细内容啊。这样,写某个领域的文献综述论文时,需要找什么东西时,就在几百篇论文的。

2025-02-04 15:02:09 476

原创 用deepseek R1把本地的AI工具都做成离线

进入ollama官网(https://ollama.com/library/deepseek-r1:14b),我的显卡是4070,显存是12G,因此刚好安装140亿参数的模型。deepseek的R1是一个开源模型,那我可以使用ollama部署到本地。这样的好处在于数据隐私。总得来说,从几个月前用o1 mini的震惊,再到今天自己的4070显卡都能部署逻辑能力相近o1 mini的R1,速度还很快。(唯一可惜的是cursor只能通过API进行调用deepseek,没法完全本地化,用vs code进行代替)

2025-02-03 19:24:38 1033

原创 Latex的学习笔记

使用标记文本来显示内容,比word好的地方在于投稿不需要花太多时间排版以及专注于论文写作本身。安装过程参考网上的技术博客,速度较慢,安装编译器和各个包需要一个小时左右。Claude sonnet 3.5 (问题:我不会LATEX,但有markdown和代码基础,请让我学习十个课程,快速入门。自此,Latex基本的用法都掌握了,不熟悉就再查询一下。用起来很优雅,不用再考虑排版了,爽。LaTeX特别适合于论文撰写,

2025-01-15 15:42:29 388

原创 KHOJ的安装部署

KHOJ是一个开源的AI对话平台(github标星超2w),有免费版本(https://app.khoj.dev/)。但本地部署,可以保证自己的文件安全,另外一方面,有数据库能随时查询过去自己的所有对话记录。cursor安装WSL插件,点击左下角远程连接获取wsl的文件夹,获取成功后即可使用cursor进行debug。我用的第三方中转API,打开配置菜单,全部能用的200多个模型都罗列出来了。下载docker desktop,安装,安装后会自动关联WSL虚拟机,然后等待安装,重启电脑。

2025-01-15 02:01:59 545

原创 搭建你自己的论文资讯平台

关注遥感和地信的人群有大不少是学术圈的人,在学术圈就免不了看论文,看论文不一定是看全文,大概浏览看看动态就行了,我感觉还是比较有趣,一方面,RSS的订阅链接看起来不方便,另外一方面,你自己也有自己的学术资料库。可不可以有一次性展示完你关心的期刊的学术前沿了(RSS订阅当然可以,但是不方便啊)。可以实现从你喜欢的RSS订阅链接中订阅期刊,自动更新文章,文章都存进数据库中,用网页更方便,还用中文进行展示,还能保存到你自己的数据库里。每天看公众号的推文,都是转发的重量级的文章。

2025-01-13 03:56:35 357

原创 集合卡尔曼滤波ENKF的学习笔记

天气模型预测是25°C(这叫"背景场"),实际观测是23°C(这叫"观测值"),数据同化就是把这两个信息合理结合。可以根据我的代码跑一遍,因为每一步都涉及到了公式,要理解这里面的每一个过程,会涉及一些线性代数的知识(矩阵求逆、二次型矩阵等)。这里为了测试,集合成员数量设置为了4。: 卡尔曼增益,H在非观测点是0,但K通过Pb传播了观测信息到所有格点,反映了每个格点受观测的影响程度。观测算子,将模式空间的值映射到观测空间,在观测点为1,其他点为0,n是集合的样本数量,m是观测点数量,k是背景点的数量,则。

2025-01-08 23:49:09 1207

原创 GEE下载的分块数据进行镶嵌合并

GEE下载的数据有空值,把空值设为固定值,比如-9999,然后再进行镶嵌,空值就不会压着分块数据了。也适用于其他有空值范围的tif数据。

2024-12-30 10:31:28 238 1

原创 GEE+本地XGboot分类

在此之前,需要先准备点数据,我是准备了两个点数据矢量(耕地矢量和非耕地矢量),字段属性crop为1代表耕地,0代表非耕地。如果你是做多类别,你可以多做几个矢量。然后下载完成后,用gdal做一下镶嵌(设置tile为256,LZW压缩),波段太多,导致数据非常大。但这个代码直接在云端上进行分类,GEE会爆内存,因此我准备把数据下载到本地,使用GPU加速进行XGboot提取耕地。我想做提取耕地提取,想到了一篇董金玮老师的一篇论文,这个论文是先提取的耕地,再做作物分类,耕地的提取代码是开源的。

2024-12-18 23:52:13 888

原创 使用ERA5数据绘制风向玫瑰图的简易流程

做一个风向玫瑰图,想到的还是高分辨率的ERA5land的数据(0.1°分辨率,逐小时分辨率,1950年至今)。在代码中填入需要生成的风玫瑰图的经纬度,即可获得2017-2023年的该地区风向情况。风向,我分为了16个(0-360°,北方向为0),统计该时间段内的16个风向频率。今天需要做一个2017年-2023年的。

2024-12-13 23:24:08 380

原创 conda的国内.condarc设置

show_channel_urls: truedefault_channels:

2024-11-26 21:21:50 236

原创 nc数据补值

我的NC数据的右上角缺失值,准备使用IDW插值进行补充。

2024-11-25 17:06:20 299

原创 2009年-2024年CTAmap类型数量检查

是中国行政区划之一,行政地位与市辖区、县级市、县、自治县、旗、自治旗、特区相同,属县级行政区,现仅有一个,为湖北省直辖的神农架林区,这里指六枝特区属六盘水市辖区域,位于贵州省西部,现仅有一个。因此:。此外,还有省直辖县、省直辖市。在民政部的行政区划等级中不属于任何地级行政区划代管。属于县级行政区,不经地级行政区代管或管辖,由省级行政区直接管辖,独立于地级行政区之外单独建制,由所在的省或自治区直接领导和管理。因此省直辖县、省直辖市,也属于县级行政区。‍。

2024-11-22 12:42:20 885

原创 2024年初省市县行政区划数据(截止2023.12.31)

‍。

2024-11-22 12:41:45 1968

原创 2013年初省市县行政区划数据

2013年期间,我国有8个县和3个县级市改为市辖区,3个县改为县级市,8个市辖区合并为4个市辖区,新设立5个市辖区,1个地区改为地级市,1个市辖区改名。在2013年底的省市县数据的基础上,我们进行反推,获得2013年初的省市县区划数据。下面是修改的具体流程。

2024-11-22 12:41:14 1088

原创 2012年初省市县行政区划数据

2012年期间,有6个县、县级市改为市辖区,9个市辖区合并为4个市辖区,新设5个县级单位和1个地级市,3个县级单位的部分乡镇划给3个县级单位,基于具体的更新内容和2013年初行政区划数据进行逆向推导,获得了2012年初省市县行政区划数据。

2024-11-22 12:39:56 747

原创 2011年初省市县行政区划数据

2011年期间,中国共有3个县改为市辖区,3个县级市改为市辖区,1个市辖区撤销,6个区县合并为3个市辖区,新设立1个县级市,1个地级市撤销(同时下辖的1个市辖区改为县级市,新县级市和另外下辖的4个县划分给3个地级市),2个地区改为地级市,1个市辖区改名。基于2011年期间发生的行政区划更改以及2012年初省市县行政区划矢量数据,开始制作2011年初的省市县区划矢量数据。

2024-11-22 12:39:25 1118

原创 2010年初省市县行政区划数据

2010年期间,共计有有4个市辖区合并为2个市辖区,1个县改为市辖区,2个县改为县级市,1个市辖区撤销,设立1个县级市。基于变更情况,使用已有的2011年初行政区划数据,进行反推,获得2010年初省市县行政区划数据。

2024-11-22 00:46:32 625

原创 2009年初省市县数据(截止2008.12.31)

2009年期间,共有1个县级市改为市辖区,1个市辖区撤销,3个市辖区合并为1个市辖区,新设立1个县和1个市辖区,1个县的3个镇下辖村划归1个自治县。

2024-11-22 00:45:55 795

原创 GEE下载ERA5-Land气象数据(1950-至今,降水、温度)

ERA5-Land是一个高分辨率的陆地再分析数据集,相比ERA5数据集具有更高的空间分辨率。它是通过重新运行ECMWF ERA5气候再分析系统的陆地分量生成的。下载速度也很快,一分钟不到就统计完一年的温度数据。

2024-11-16 23:58:51 1296

原创 批量对齐栅格数据代码

经常会遇到同一个区域的几个栅格数据的分辨率、行列号和投影都不一致。那可以用gdal和rasterio来实现。最近经常遇到把一个栅格数据对齐到另外一个栅格数据。

2024-11-15 23:23:16 342

原创 WRF_CHEM安装没有convert_emiss.exe的解决方案

在在WRF-Chem v4.0及以后的版本中,安装wrf-chem默认是没有convert_emiss,需要重新去NOAA的官网下载一个compile。然后复制这个代码,替换wrf安装目录中的compile(记得备份),然后再运行就可以了。如果出现了convert_emiss.exe就成功了。

2024-10-30 15:39:42 331 1

原创 prithvi WxC气象模型

这三个模型的大小都在30G左右,下载后就能直接使用。Prithvi多时相农作物在线自动分类的网址 https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification-demo。Prithvi洪水在线自动识别的网址:https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-sen1floods11-demo。

2024-09-24 17:58:56 1318 1

原创 运行WPS报错

即该PFILE为FILE,即可完成。

2024-09-23 01:20:17 438

原创 解决问题 Could not install packages due to an OSError: Could not find a suitable TLS CA certificate bu

conda和pip安装的时候报错,是因为SSL的pem报错。这个变量值根据你自己的conda环境中去找。如果还是运行失败,重启电脑,让环境变量生效。

2024-09-19 00:01:36 2171 3

原创 从搜索热度上看Arcgis的衰退

google trends是一个google综合了每日的搜索情况的统计网站,可以追踪从2004年开始各个关键字的搜索热度。我用arcgis和qgis作为对比,简单探索了arcgis和qgis的全球相关热度。假设,搜索arcgis越高的区域,arccgis的软件使用率越高,

2024-09-09 16:33:05 879 2

原创 CMAQ 5.4 输入与输出数据

CMAQ输出文件.https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/CMAQ_UG_ch07_model_outputs.md。CMAQ输入文件.https://github.com/USEPA/CMAQ/blob/main/DOCS/Users_Guide/CMAQ_UG_ch04_model_inputs.md。虽然这个文件是可选的,但在MET_CRO_2D文件中也包含了两层土壤数据的简化版本(只有一个维度,地底1米的数据)。

2024-09-06 22:01:25 2801

原创 合并大量netcdf数据的代码

共计2000多个nc数据,按照日期合并。

2024-09-05 19:58:14 391

原创 报错:CPU指令集的问题

我使用的超算平台是基于AMD自研的CPU,不支持-xHost,而我的icon是通过ifort编译的,只用了-xHost,因此不兼容。如果再到AMD平台编译软件,而且使用的ifort,可以使用-march=core-avx2提高兼容性。优点:生成的可执行文件可以在所有支持AVX2的CPU上运行,提供了更好的可移植性。缺点:生成的可执行文件可能无法在不同架构的CPU上运行,或运行效率降低。它会自动检测当前编译机器的CPU,并为该特定CPU生成最优化的代码。优点:可以充分利用编译机器CPU的所有特性。

2024-09-05 13:35:19 980

原创 gpt_academic,一个读/写论文的利器

我自己试了一下,配置了五个公司(openai、kimi、讯飞、阿里和百度)AI的key,能正常使用。另外还可以输入某个学者的Google学术链接,总结这个人的研究情况。先安装一个conda,然后在环境中使用pip安装所需的包,即可使用。大部分AI的key都比较便宜,有一些还是免费的。最近看到github上标星60K的读论文和写论文的AI开源工具。然后我让它读论文,也可以生成脑图;

2024-08-23 15:39:51 1122

原创 GIS中AI矢量化工具

我比较好奇AI Vectorizer的工作原理,翻了官方的帖子,他们用了遥感卫星图、地质图等在GPU上训练了50多天,模型训练好了之后,将模型部署在全球各地的服务器上(在中国的速度也很不错)。最近我在X平台有注意到一个矢量化工具,AI Vectorizer ,根据实验对比,这个AI工具可以减少在矢量化过程中86%的鼠标点击数,极大地减少矢量化过程中的工作量。所以,我在想,如果专门训练一个这样的模型,做成本地矢量化的软件或者GIS软件的插件,而不是通过网络API来获取数据,那速度不得再快个一倍。

2024-08-19 14:18:34 633

原创 新版哥白尼下载哨兵的优势

之前下载sentinel影像,一直用的Google earth engine。

2024-08-18 18:54:22 740

系统集成项目管理工程师上午学习资料.pdf

系统集成项目管理工程师上午学习资料.pdf

2021-09-06

zstd-1.5.0.2-pp37-pypy37_pp73-win_amd64

zstd-1.5.0.2-pp37-pypy37_pp73-win_amd64

2021-08-19

zstd-1.5.0.2-cp38-cp38-win_amd64

zstd-1.5.0.2-cp38-cp38-win_amd64

2021-08-19

zstd-1.5.0.2-cp310-cp310-win32

zstd-1.5.0.2-cp310-cp310-win32

2021-08-19

zstd-1.4.5.1-cp36-cp36m-win32

zstd-1.4.5.1-cp36-cp36m-win32

2021-08-19

zstd-1.4.4.0-cp35-cp35m-win_amd64

zstd-1.4.4.0-cp35-cp35m-win_amd64

2021-08-19

zstd-1.4.4.0-cp35-cp35m-win32

zstd-1.4.4.0-cp35-cp35m-win32

2021-08-19

zstd-1.4.4.0-cp27-cp27m-win_amd64

zstd-1.4.4.0-cp27-cp27m-win_amd64

2021-08-19

zstd-1.4.4.0-cp27-cp27m-win32

zstd-1.4.4.0-cp27-cp27m-win32

2021-08-19

zstd-1.3.8.1-cp34-cp34m-win_amd64

zstd-1.3.8.1-cp34-cp34m-win_amd64

2021-08-19

zstd-1.3.8.1-cp34-cp34m-win32

zstd-1.3.8.1-cp34-cp34m-win32

2021-08-19

zs-0.10.0-cp39-cp39-win_amd64

zs-0.10.0-cp39-cp39-win_amd64

2021-08-19

zs-0.10.0-cp39-cp39-win32

zs-0.10.0-cp39-cp39-win32

2021-08-19

zs-0.10.0-cp38-cp38-win_amd64

zs-0.10.0-cp38-cp38-win_amd64

2021-08-19

zs-0.10.0-cp38-cp38-win32

zs-0.10.0-cp38-cp38-win32

2021-08-19

zs-0.10.0-cp37-cp37m-win_amd64

zs-0.10.0-cp37-cp37m-win_amd64

2021-08-19

zs-0.10.0-cp37-cp37m-win32

zs-0.10.0-cp37-cp37m-win32

2021-08-19

zs-0.10.0-cp36-cp36m-win_amd64

zs-0.10.0-cp36-cp36m-win_amd64

2021-08-19

zs-0.10.0-cp36-cp36m-win32

zs-0.10.0-cp36-cp36m-win32

2021-08-19

zs-0.10.0-cp35-cp35m-win_amd64

zs-0.10.0-cp35-cp35m-win_amd64

2021-08-19

zs-0.10.0-cp35-cp35m-win32

zs-0.10.0-cp35-cp35m-win32

2021-08-19

zs-0.10.0-cp34-cp34m-win_amd64

zs-0.10.0-cp34-cp34m-win_amd64

2021-08-19

zs-0.10.0-cp34-cp34m-win32

zs-0.10.0-cp34-cp34m-win32

2021-08-19

zs-0.10.0-cp27-cp27m-win_amd64

zs-0.10.0-cp27-cp27m-win_amd64

2021-08-19

zs-0.10.0-cp27-cp27m-win32

zs-0.10.0-cp27-cp27m-win32

2021-08-19

zopflipy-1.5-pp37-pypy37_pp73-win_amd64

zopflipy-1.5-pp37-pypy37_pp73-win_amd64

2021-08-19

zopflipy-1.5-cp39-cp39-win_amd64

zopflipy-1.5-cp39-cp39-win_amd64

2021-08-19

zopflipy-1.5-cp39-cp39-win32

zopflipy-1.5-cp39-cp39-win32

2021-08-19

zopflipy-1.5-cp38-cp38-win_amd64

zopflipy-1.5-cp38-cp38-win_amd64

2021-08-19

zopflipy-1.5-cp38-cp38-win32

zopflipy-1.5-cp38-cp38-win32

2021-08-19

zopflipy-1.5-cp37-cp37m-win_amd64

zopflipy-1.5-cp37-cp37m-win_amd64

2021-08-19

zopflipy-1.5-cp37-cp37m-win32

zopflipy-1.5-cp37-cp37m-win32

2021-08-19

zopflipy-1.5-cp310-cp310-win_amd64

zopflipy-1.5-cp310-cp310-win_amd64

2021-08-19

zopflipy-1.5-cp310-cp310-win32

zopflipy-1.5-cp310-cp310-win32

2021-08-19

zopflipy-1.4-cp36-cp36m-win_amd64

zopflipy-1.4-cp36-cp36m-win_amd64

2021-08-19

zopflipy-1.4-cp36-cp36m-win32

zopflipy-1.4-cp36-cp36m-win32

2021-08-19

zopflipy-1.3-cp35-cp35m-win_amd64

zopflipy-1.3-cp35-cp35m-win_amd64

2021-08-19

zopflipy-1.3-cp35-cp35m-win32

zopflipy-1.3-cp35-cp35m-win32

2021-08-19

zopflipy-1.3-cp27-cp27m-win_amd64

zopflipy-1.3-cp27-cp27m-win_amd64

2021-08-19

zopflipy-1.3-cp27-cp27m-win32

zopflipy-1.3-cp27-cp27m-win32

2021-08-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除