目录
1.数据简介
2.数据分享
3.数据探索
3.1 数据显示
3.2 数据的使用
3.3数据的探索
3.3.1耕地数据相减
3.3.2重分类
3.3.3按国家统计新增耕地面积
3.3.4数据的再探索
3.5数据探索总结
4.总结
5.结语
1.数据简介
发现一个好玩的数据,“史前一万年的耕地数据集”。 数据作者是清华大学的Bowen Cao博士。 实际上该数据集是从公元前3500年开始的(人类进入农耕时代),一共有9期数据,分别是:公元前3500年、公元元年、公元1000年、公元1500年、公元1700年、公元1800年、公元1900年、公元2000年、公元2100年的数据。
数据简介:耕地对粮食安全、能源供应、生物多样性、生物地球化学循环和气候变化具有巨大影响。作者制作了全球首个公元前一万年到公元2100 年的1km分辨率的全球耕地数据集。从长时间尺度上看,全球耕地面积总体呈爆发性增长趋势,从公元前一万年年的耕地面积还为0万平方公里,1500年就到了280万平方公里,1850年的620万平方公里,2010年的1640万平方公里(一个俄罗斯,好像也不多啊(⊙_⊙))。从地图上可以看到,耕地起源于几个独立的中心,并逐渐扩展到其他地区。
针对还未到来的2100年,作者是通过the History Database of the Global Environment 3.2和the Land-Use Harmonization 2的历史数据集中提取相关参数,然后根据耕地适宜性、核心密度和其他约束条件的组合进行耕地制图。根据未来世界发展方向不同,耕地在2010年到2100年之间,增长率从18.6%到82.4%也不同。不同地理区域之间存在很大的地区差异。但该制图结果在分布格局和总量上与目前广泛使用的数据集吻合较好。
2.数据分享
已经百度网盘链接:https://pan.baidu.com/s/1nHWFlcgu4s1361-tNo0mYw
密码:2222
数据很小,不过1个多G,包含8期史前耕地影像、8期2100年的预测影像、论文原文、全球国家矢量图,可以下载玩玩。
3.数据探索
3.1 数据显示
数据下载完毕后,将影像进行加载到arcgis中,本数据的值的范围为0-1(0代表耕地概率为0,1代表耕地概率为100%,值越大,耕地概率越大)。
我加载了公元1500年的耕地影像,看起来还不错,符合历史观。
为了可视化,根据论文作者的配图对颜色进行了调整,顺眼多了:
3.2 数据的使用
观察到arcgis自动的分类区间值的范围在低水平太密集了,
0.4颜色这么深?不合理啊,换成0.5才配有颜色,0.8才叫有耕地:
然后就变成这样了,好家伙!是阿三大哥不配在16世纪有耕地?
3.3数据的探索
既然有了数据,那就用这套数据做点东西,看看全球公元1500年到公元2000年,耕地增加的区域。思路也很简单:
第一步:2000年耕地数据减1500年耕地数据,如果是新增加的耕地,概率大于0。值越大,该地是新增耕地的概率也就越大。
第二步:根据值的范围,重分类。
第三步,按国家统计新增耕地面积
3.3.1耕地数据相减
打开arcgis的栅格计算器,neW_data=data2000-data1500:
哇,我貌似看到趋势了,新增大部分的在美国、中欧和印度?
3.3.2重分类
重分类考虑两个要素,第一个是看值的大小,值太小不考虑为耕地;第二看是看总体的值怎么分布的。
emmm,这个值分布的太均匀,还是取0.5作为分界点吧,快刀斩乱麻别犹豫,犹豫就会败北。大于0.5的是新增耕地,重分类其值为1;将小于0.5的值重分类为0。于是得到过去500年新增耕地图:
3.3.3按国家统计新增耕地面积
(tips:500年,国家名字都变了?不重要好吧,就是玩,又不是做科研,不要这么严谨)
这里需要用到一个以表格显示分区统计的工具,统计一个矢量多边形内栅格的总数。
区域字段选择国家名,统计类型一定要设置为SUM。由于新增耕地的栅格值命为1,那SUM代表增加的耕地总栅格数,新增耕地总面积=SUM*单元栅格面积(1平方公里)。
然后我们就得到了结果数据,如下图所示:
表格入excel表中,进行可视化:
emmmm,阿三难道16世纪真不种地吗,那这么比不是没意义,耕地增加面积快赶上自己国土面积了。
3.3.4数据的再探索
500年比起来,意义不大,大部分都是新增国土,试试1900年和2000年的对比。
过程同上,只放结果:
那估计1990年阿三土地开发的也差不多了。
Tips:以上面积不考虑投影变形。
3.5数据探索总结
这个数据的准确性可以考虑使用统计数据验证下,但统计数据不好找,考虑下历史书。能粗略得出一个结论:阿三在公元1500年前还没有大规模开荒,这个开荒过程发生在公元1500年-公元1900年之间(感觉像是废话),20世纪后,阿三的后备土地资源就显得明显后劲不足了。在不考虑投影变形的基础上,近五百年耕地增加最多的是美国、俄罗斯。近一百年耕地增加最多的是加拿大和澳大利亚。
4.总结
这套数据,从史前一万年到未来一百年的耕地制图。史前数据无法验证,未来数据不可测。但不可否认这篇论文的优秀,切入点和方法都是有理有据,点赞。
自己的看法:有生之年大概率看到全球人口的萎缩,但农业生产效率是提升的,严苛的环保政策。emmm,说不定未来一百年耕地面积是减少的
5.结语
引用:Cao, B., Yu, L., Li, X., Chen, M., Li, X., and Gong, P.: A 1 km global cropland dataset from 10000 BCE to 2100 CE, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-219, in review, 2021.
该论文、数据、全球矢量可使用百度网盘:
百度网盘链接:https://pan.baidu.com/s/1nHWFlcgu4s1361-tNo0mYw
密码:2222
可以前往“地信遥感数据汇”(https://www.gisrsdata.com/)获取更多数据。