1.数据介绍
该数据来源是Esri公司基于10m哨兵影像数据,使用深度学习方法制作做的全球土地利用数据。该数据的数据精度总体精度为85%,混淆矩阵如下所示:
Esri全球土地利用数据的影像数据的分布如下所示:
但该数据只能分块进行下载,没有制作按区划数据进行归纳。因此本人下载了全球的728景影像,并利用2021年的全国行政区划数据对其进行批量裁剪,最后得到了全国各省、各市、各县的土地利用数据,最后使用镶嵌工具获得每一个地区对应的一张tif影像。
2.数据的制作
2.1 数据制作流程图
使用Python制作裁剪与镶嵌脚本,对各省数据进行归纳。其中制作流程图如下所示:
2.2 数据的筛选
按照四至范围,选择覆盖了全国的分块影像数据,并将其放入同一个文件夹中。
2.3 数据的裁剪
使用rasterio模块读取tif,使用geopandas读取矢量的各个要素,并利用rasterio的clip函数对数据进行裁剪。裁剪脚本如下所示:
#引入模块包
import os
from osgeo import gdal, gdalconst
import rasterio as rio
import rasterio.mask
import rasterio
from tqdm import tqdm
def Land_Cover(Mask_PATH,Data_path,OutPut_path):
tifPaths_folder_SHENG = os.listdir(Mask_PATH)
for mask_path in tqdm(tifPaths_folder_SHENG):
try:
#省目录
Land_Cover_SHENG_PATH = os.path.join(mask_path,