使用gdal均匀筛选点矢量

本文介绍了一种使用Python和GDAL库的方法,通过计算点之间的欧式距离,从给定的点数据中筛选出均匀分布在空间中的指定数量的样本点,以创建一个新的矢量文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用gdal均匀筛选点矢量

作用:

通过计算各点之间的欧式距离,筛选出符合目标的、均匀发布在空间中的N个数据点。

效果示意图

运行环境

python 3.10
安装:tqdm、numpy和tqdm这三个库

完整代码

import numpy as np
from osgeo import ogr, osr
from tqdm import tqdm

# 代码作用:通过计算各点之间的欧式距离,筛选出符合目标的、均匀发布在空间中的N个数据点。



# 定义需要采样的个数
n_samples = 100
input_path = r"测试数据\村点.shp"
output_path = r"测试数据\samples.shp"

# 1. 读取原始点数据
driver = ogr.GetDriverByName('ESRI Shapefile')
inds = driver.Open(input_path, 0)
layer = inds.GetLayer()

# 2. 提取点坐标和属性
coords = []
attrs = []
for feature in layer:
    geom = feature.GetGeometryRef()
    coords.append((geom.GetX(), geom.GetY()))
    attrs.append([feature.GetField(i) for i in range(feature.GetFieldCount())])
coords = np.array(coords)
attrs = np.array(attrs)

# 3. 定义距离函数
def distance(p1, p2):
    return np.sqrt(np.sum((p1 - p2)**2))

# 4. 随机选择第一个点
idx = np.random.choice(coords.shape[0], 1)
samples = coords[idx]
sample_attrs = attrs[idx]

# 5. 选择空间均衡的采样点
for _ in tqdm(range(n_samples - 1)):
    dists = np.array([np.min(np.array([distance(p, s) for s in samples])) for p in coords])
    idx = np.argmax(dists)
    samples = np.append(samples, [coords[idx]], axis=0)
    sample_attrs = np.append(sample_attrs, [attrs[idx]], axis=0)
    coords = np.delete(coords, idx, axis=0)
    attrs = np.delete(attrs, idx, axis=0)

# 6. 将采样点转为gdal几何对象
out_samples = []
for sample in samples:
    point = ogr.Geometry(ogr.wkbPoint)
    point.AddPoint(sample[0], sample[1])
    out_samples.append(point)

# 7. 创建新的矢量层并写入采样点
out_driver = ogr.GetDriverByName('ESRI Shapefile')
out_ds = out_driver.CreateDataSource(output_path)
out_layer = out_ds.CreateLayer('samples', layer.GetSpatialRef(), ogr.wkbPoint)

# 添加属性字段
for i in range(len(layer.schema)):
    field_defn = layer.schema[i]
    out_layer.CreateField(field_defn)

# 写入采样点要素
for i, sample in enumerate(out_samples):
    feature = ogr.Feature(out_layer.GetLayerDefn())
    feature.SetGeometry(sample)
    for j, attr in enumerate(sample_attrs[i]):
        feature.SetField(j, attr)
    out_layer.CreateFeature(feature)

out_layer = None
out_ds = None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我锐多宝

请我喝杯啤酒吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值