JAVA二叉排序树的建立_二叉排序树的理解和实现(Java)

二叉排序树的定义和性质

二叉排序树又称二叉排序树。它或者是一个空树,或者是一个具有下列性质的二叉树:

若它的左子树不空,则左子树上所有节点的值均小于它的根结构的值

若它的右子树不空,则右子树上所有结点的值均大于它的根节点的值

它的左、右子树也分别是二叉排序树

如下图是一个二叉排序树:

54b88b3f63bcbc3d220338cf85b21cd5.png

下面的代码(Java实现)基本全部基于递归实现(非递归操作复杂且效率高),简单的实现了BST的这些操作:初始二叉排序树、查找、插入、删除任意结点、遍历二叉树(中序)。

对于二叉排序树的结点定义

public class BinaryTreeNode {

public int data; //数据域

public BinaryTreeNode left, right; //指向左右子节点的指针

public BinaryTreeNode(int data, BinaryTreeNode left, BinaryTreeNode right) {

this.data = data;

this.left = left;

this.right = right;

}

}

同时,在二叉查找树实现类中定义二叉查找树的根节点:

public BinaryTreeNode root;

初始化二叉查找树

public void insertBinaryTree(int[] datas) {

if(datas.length < 1) {

System.out.println("the datas Array length small zero!");

return;

}

this.root = new BinaryTreeNode(datas[0], null, null);

for (int i = 1; i < datas.length; i++) {

this.insert(this.root, datas[i]);

}

}

private void insert(BinaryTreeNode root, int data) {

if(data > root.data) {

if(root.right == null)

root.right = new BinaryTreeNode(data, null, null);

else

this.insert(root.right, data);

}

else {

if(root.left == null)

root.left = new BinaryTreeNode(data, null, null);

else

this.insert(root.left, data);

}

}

通过传递给insertBinaryTree()存储二叉查找树值的数组来完成初始化。通过insert()方法递归的来完成对结点的初始化操作。

二叉排序树的遍历(中序)

public void inOrder(BinaryTreeNode root) {

if(root != null) {

this.inOrder(root.left);

System.out.print(root.data + "-");

this.inOrder(root.right);

}

}

根据二叉排序树的特性我们知道如果根节点非空,则根节点的左子树上所有结点的值均小于根节点,右子树上的所有结点值均大于根节点。同理对任意子树都满足上面。所以对于二叉排序树的遍历是对二叉排序树的由小到大的升序输出。在这里前序和后序遍历与中序逻辑相似,不做展示。

根据键值查询BST

public boolean SearchBST(BinaryTreeNode root, int key) {

if(root == null) {

return false;

}

else if(key == root.data) {

return true;

}

else if(key < root.data) {

return this.SearchBST(root.left, key);

}

else {

return this.SearchBST(root.right, key);

}

}

查询操作也基于递归,查询过程和节点结点值进行比较,若成功返回true。

二叉排序树的插入操作

public boolean InsertBST(BinaryTreeNode root, int key) {

if(!this.SearchBST(root, key)) {

this.insert(root, key);

return true;

}

else {

System.out.println("the key existence in BinaryTree");

return false;

}

}

该操作的思路是查询带插入的key是否已经在二叉排序树中,如果不在,执行insert()方法递归的将key插入到指定的位置,如果存在,返回错误信息并结束。

但是后面在想的时候发现这段代码虽然实现很简单,但是执行步骤却很复杂:在查找是否存在时就需要遍历一次完整的二叉排序树,之后在插入时同样需要遍历一次,将key插入。所以想到了一个优化就是在查找时保存key值应该插入的结点(注意,这个时候还没有插入,所以此时结点并不是真正存在的)的父结点。这样在执行插入时将插入操作的时间复杂度将为O(1).

二叉排序树的插入操作优化:

声明一个parent结点来用来缓存查找时查到的父节点

public BinaryTreeNode parent = null;

对查询方法做简单调整:

public boolean SearchBST2(BinaryTreeNode root, BinaryTreeNode parent, int key) {

if(root == null) {

this.parent = parent;

return false;

}

else if(key == root.data) {

this.parent = root;

return true;

}

else if(key < root.data) {

return this.SearchBST2(root.left, root, key);

}

else {

return this.SearchBST2(root.right, root, key);

}

}

首次操作时parent=null,之后保存当前查询root结点的父节点。

对插入方法做简单调整:

public boolean InsertBST2(BinaryTreeNode root, int key) {

if(!this.SearchBST2(root, this.parent, key)) {

BinaryTreeNode keyNode = new BinaryTreeNode(key, null, null);

if(this.parent == null) {

root = keyNode;

}

else if(key < this.parent.data) {

this.parent.left = keyNode;

}

else this.parent.left = keyNode;

return true;

}

else {

System.out.println("the key existence in BinaryTree");

return false;

}

}

这样在查询操作完成后通过简单的语句便可将key插入指定的位置,而不需要在做一次递归。

删除二叉排序树的任意结点

对于二叉排序树的删除操作并不是很容易,因为我们需要保证再删除了结点后,让这棵树依旧满足二叉排序树的特性,所以在删除时就需要考虑多种情况。一般分为三种情况进行讨论。

我们做一个约定:定义待删除的结点是结点x,其父结点是结点p,左子树结点是l,右子树结点是r,兄弟结点为b。其中NAN均为虚拟的null结点。

待删除的结点为叶子结点时

直接删除叶子结点x,并将父结点指向该节点的域置位NAN(null)。

9c0766739041c1a0e559d89a7da2be07.png

这时直接删除x结点,然后将p的左结点指向NAN结点

540da47e607a810781ecea1f316382c6.png

当删除的结点只有左子树或只有右子树

相对来说也好解决,那就是结点删除后,将它的左子树或右子树整个移动到删除结点的位置即可,可以理解为独子继承父业。

比如要删除结点x,直接将父结点p指向待删除的结点x的指针直接指向x结点的唯一儿子结点(l或则是r),然后删除x结点即可。

该图只演示了删除只有左子树的结点的时候,删除只有右子树的时候思路相同。

5ccaba9e43472bfad600888b736411da.png

这时候将p的左子树指向x唯一的子结点L,,然后在删除x

6d305d69ed45643ca25e1c59b73f4dc7.png

当删除的x结点存在左右结点时

这也是最麻烦的一种情况,通常的解决方式是用删除结点x的前驱(或后继)结点填补它的位置。因为x有一个左子结点,因此它的前驱结点就是左子树中的最大结点,这样替换就能保证有序性,因为x.data和它的前驱之间不存在其他的键值。

操作如下:

寻找到待删除的结点的前驱结点,并用s指向其前驱结点

找到待删除结点的前驱结点的父结点,并用q来指向前驱结点的父节点。

将x的前驱结点的值赋给x,完成替换操作。

最后修改q的指向为s的子节点,并删除s。

递归寻找待删除的结点:

public boolean DeleteBST(BinaryTreeNode root, int key) {

if(root == null) {

System.out.println("the root node is null");

return false;

}

else {

if(key == root.data) {

return this.delete(root);

}

else if(key < root.data) {

return this.DeleteBST(root.left, key);

}

else {

return this.DeleteBST(root.right, key);

}

}

}

删除指定的x结点:

public boolean delete(BinaryTreeNode root) {

BinaryTreeNode q, s;

if(root.right == null) {

root = root.left;

}

else if(root.left == null) {

root = root.right;

}

else {

q = root;

s = root.left;

while(s.right != null) {

q = s;

s = s.right;

}

root.data = s.data;

if(q != root) {

q.right = s.left;

}

else {

q.left = s.left;

}

}

return true;

}

源代码:

public class BinaryTreeBuilder {

public BinaryTreeNode root;

public BinaryTreeNode parent = null;

public void insertBinaryTree(int[] datas) {

if(datas.length < 1) {

System.out.println("the datas Array length small zero!");

return;

}

this.root = new BinaryTreeNode(datas[0], null, null);

for (int i = 1; i < datas.length; i++) {

this.insert(this.root, datas[i]);

}

}

private void insert(BinaryTreeNode root, int data) {

if(data > root.data) {

if(root.right == null)

root.right = new BinaryTreeNode(data, null, null);

else

this.insert(root.right, data);

}

else {

if(root.left == null)

root.left = new BinaryTreeNode(data, null, null);

else

this.insert(root.left, data);

}

}

public void inOrder(BinaryTreeNode root) {

if(root != null) {

this.inOrder(root.left);

System.out.print(root.data + "-");

this.inOrder(root.right);

}

}

public boolean SearchBST(BinaryTreeNode root, int key) {

if(root == null) {

return false;

}

else if(key == root.data) {

return true;

}

else if(key < root.data) {

return this.SearchBST(root.left, key);

}

else {

return this.SearchBST(root.right, key);

}

}

public boolean SearchBST2(BinaryTreeNode root, BinaryTreeNode parent, int key) {

if(root == null) {

this.parent = parent;

return false;

}

else if(key == root.data) {

this.parent = root;

return true;

}

else if(key < root.data) {

return this.SearchBST2(root.left, root, key);

}

else {

return this.SearchBST2(root.right, root, key);

}

}

public boolean InsertBST(BinaryTreeNode root, int key) {

if(!this.SearchBST(root, key)) {

this.insert(root, key);

return true;

}

else {

System.out.println("the key existence in BinaryTree");

return false;

}

}

public boolean InsertBST2(BinaryTreeNode root, int key) {

if(!this.SearchBST2(root, this.parent, key)) {

BinaryTreeNode keyNode = new BinaryTreeNode(key, null, null);

if(this.parent == null) {

root = keyNode;

}

else if(key < this.parent.data) {

this.parent.left = keyNode;

}

else this.parent.left = keyNode;

return true;

}

else {

System.out.println("the key existence in BinaryTree");

return false;

}

}

public boolean DeleteBST(BinaryTreeNode root, int key) {

if(root == null) {

System.out.println("the root node is null");

return false;

}

else {

if(key == root.data) {

return this.delete(root);

}

else if(key < root.data) {

return this.DeleteBST(root.left, key);

}

else {

return this.DeleteBST(root.right, key);

}

}

}

public boolean delete(BinaryTreeNode root) {

BinaryTreeNode q, s;

if(root.right == null) {

root = root.left;

}

else if(root.left == null) {

root = root.right;

}

else {

q = root;

s = root.left;

while(s.right != null) {

q = s;

s = s.right;

}

root.data = s.data;

if(q != root) {

q.right = s.left;

}

else {

q.left = s.left;

}

}

return true;

}

public static void main(String[] args) {

int[] datas = {62, 88, 58, 47, 35, 73, 51, 99, 37, 93};

BinaryTreeBuilder b = new BinaryTreeBuilder();

b.insertBinaryTree(datas);

b.inOrder(b.root);

b.InsertBST(b.root, 1);

System.out.println();

b.inOrder(b.root);

}

}

对于BST的总结

BST以链接方式存储,保持了链接存储结构在执行插入或删除操作时不用移动元素的优点,只要找到合适的插入和删除位置后,仅需要修改链接指针即可。插入删除的时间性能比较好。而对于BST的查找,其比较次数等于给定值的结点在二叉排序树的层数,极端情况下,最少为1次,最多不会超过树的深度。也就是说BST的查找性能取决于BST的形状。

我们希望二叉排序树是比较平衡的,其深度与完全二叉树相同,均为log⁡2n\log_{2}nlog2​n + 1,那么查找的时间复杂度也就为O(logn),近似于折半查找。这就引申出一个问题,即如何让BST平衡化。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值