初中数学二次函数这部分内容,是中考的热门考点,同学们一定要好好学习这部分的内容,而二次函数抛物线与直线的交点问题,也是中考比较热衷的题型和考法,今天我和同学们一起通过实例来分析讲解这部分的内容,明确交点的方法。
求抛物线y=ax^2+bx+c(a≠0)与直线y=kx+m的交点的横坐标,就是求一元二次方程ax^2+bx+c=kx+m的根。抛物线y=ax^2+bx+c(a≠0)的图象与一次函数y=kx+m(k≠0)的图象的交点个数由方程组y=ax^2+bx+c和y=kx+m的解的组数确定。
1、当上述方程组有两组不同的解时,两个函数的图像有两个不同的交点;2、当上述方程组有两组相同的解时,两个函数的图像只有一个交点;3、当上述方程组无解时,两个函数的图像没有交点。
例题1::如图所示,已知二次函数y=ax^2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点。(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值。
解析:第一问求解二次函数的解析式,题目中给定的已经条件是过三个坐标点,并且坐标已经明确给出了,因此直接代入列出一个关于a,b,c的三元一次方程,求解出a,b,c的值即可。解出来的解析式是y=½x^2-½x-1.第二问中,与x轴的交点D,求解方法就是让y=0,求解出关于x的二元一次方程的解,即可。D点坐标为(-1,0)。第三问中写出什么范围内一次函数的值大于二次函数的值,在第二个图中我们可以看出,在DC之间,一次函数的值大于二次函数的值,因此建立两个函数的方程,求解出D,C两点的横坐标,即所求取值范围,为-1
通过这个例题,大家特别注意,对于求两个函数图像的公共点问题一般要转化为方程来求解,即联立两个函数(方程)的解析式解方程组。为了需要有时通过移项,方程两边可看成两个新的函数的交点问题。关于这部分内容这是较为基础的知识点和考点,还需要同学们通过做题继续巩固,二次函数抛物线与直线交点问题,位置关系问题,函数值大小范围问题,都是考试中经常出现的,希望同学们多加练习,掌握这类题目的解题方法。