函数的凹凸性证明_第二百一十二夜:高考押题-双曲函数的性质

8e4d49bc4c2fda2b84a18be4d10a2b9a.png

“上蒸下煮,大暑。”

去年的现在,重庆已进入烧烤模式。而今年,大雨如注,水天一色。

似此心情非昨夜,争如人事不遂人。

1 围观:一叶障目,抑或胸有成竹

ede38ce767a32b4c51bb33b2d593e837.png

显然,本题是冲着16题去的,背景便是双曲函数。

选项①考查奇偶性,选项②考查恒变换,选项③考查单调性,选项④考查极值与最值,选项⑤则考查反函数。知识繁多,内容庞杂,心里阴影面积略大。

2 套路:手足无措,抑或从容不迫

3804544dc4abf2a54e0d460a5f267cc8.png

3 脑洞:浮光掠影,抑或醍醐灌顶

1.命题背景:

0daaabf0527669480b6ca5e2fb3d66c4.png

58340433ebadeabb5cb38139b2c29350.png

双曲正弦的图象类似三次函数,双曲余弦的图象是悬链线,双曲正切的图象限制在两条水平渐近线y=1和y=-1之间。

2.命题手法:

本题对双曲函数做了微小变形,借助导数工具考查函数的性质。基本性质包括单调性、奇偶性、周期性、对称性、最值等,而拓展性质包括有界性、凹凸性等。

先来两个简单的热身,没有人会拒绝这样的诚意。

选项①:判断奇偶性,可以用定义,也可以用图象,还可以用性质。无疑,定义在这里是最简单的。

选项②:恒等变换,顺带考查指数运算,只要计算没问题,选项②如探囊取物。

选项③,解析中是通过构造函数,利用单调性进行判断的。可我最初的想法不是这个,而是拉格朗日中值定理。

f2aeeb8934a4263102374028c7790daa.png

判定结论成立,需要严格的推理证明,但如果是否定结论,却只需一个反例。

还拓展么?

算了吧。操作中的两道题已经足以谋杀神经。

4 操作:形同陌路,抑或一见如故

160ac2af2ee728f64d5d080c0a208bc9.png

f159ad75689dd089848cc51e82f51171.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值