n错排公式:F[n]=(n-1)*(F[n-1]+F[n-2])
证明:
1.当前n-1个错排时:将其任意一封信与n对调,共(n-1)*F[n-1]
2.当前n-2个错排,1个不错排时,将不错排的那封信与n对调,共(n-1)*F[n-2]
3.当前≤n-3个错排,≥2个不错排时,显然无解.
∴F[n]=(n-1)*F[n-1]+(n-2)*F[n-2]
描述
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。
不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——TZC有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!
现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
输入
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1
输出
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
样例输入
2
3
样例输出
1
2
代码:
#include
using namespace std;
__int64 fun(int n)
{
if(n==1)return 0;
if(n==2)return 1;
if(n==3)return 2;
return (n-1)*(fun(n-1)+fun(n-2));
}
int main()
{
int n;
while(cin>>n)
cout<
return 0;
}