均值方差模型最大化收益 推导_马科维茨的投资组合和预期收益率

马科维茨在1952年提出的均值-方差模型开创了现代投资组合理论,指出投资者应通过多元化投资降低风险。该理论认为投资者厌恶风险,会倾向于选择风险小但收益相同的证券。有效投资组合是在给定风险下期望收益最大或在给定收益下风险最小的组合。通过分析证券的期望收益率、方差和协方差,可以找到有效投资组合集,并依据投资者偏好作出选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1952年,25岁的哈里·马科维茨(Harry Markowitz)在《金融杂志》上发表了一篇题为“资产组合的选择”的文章,首次提出了均值一方差模型,奠定了投资组合理论的基础,标志着现代投资组合理论(Modern Portfolio Theory,MPT)的开端。

马科维茨用收益率的期望值来度量收益,用收益率的标准差来度量风险,推导出的结论是,投资者应该通过同时购买多种证券而不是一种证券进行分散化投资。

1990年,马科维茨凭此获得了诺贝尔经济学奖。

投资者不仅关心投资收益率,也关心投资风险。

马科维茨投资组合理论的基本假设是投资者是厌恶风险的。如果在两个具有相同预期收益率的证券之间进行选择,投资者会选择风险小的。要让投资者承担更高的风险,必须有更高的预期收益来补偿。

在回避风险的假定下,马科维茨建立了一个投资组合分析的模型,其要点如下:

首先,投资者组合具有两个相关的特征:一是预期收益率,二是各种可能的收益率围绕其预期值的偏离程度,这种偏离程度可以用方差度量。

其次,投资者将选择并持有有效的投资组合。有效投资组合是指在给定的风险水平下使得期望收益最大化的投资组合,在给定的期望收益率上使得风险最小化的投资组合。

再次,通过对每种证券的期望收益率、收益率的方差和每一种证券与其他证券之间的相互关系(以协方差来度量)这三类信息的适当分析,可以在理论上识别出有效投资组合。

最后,对上述三类信息进行计算,得出有效投资组合的集合,并根据投资者的偏好,从有效投资组合的集合中选择出最适合的投资组合。

3907c6c84b2c3be45335d5b4d920d0d4.png 你觉得预期收益率可以预期吗? ↓更多内容↓

82455fccb62d158d94595ecacff34bc2.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值