小学数学中计算能力是最重要的能力,计算的方法、效率、思路等直接影响着以后的学习,只要方法通,很多东西就通了,这个方法以及解题的思路一直会持续到初中乃至高中的学习中去。然而这些方法并不难,是那么的巧妙,只是我们发现了蕴藏在计算中或者数字中的一些规律或者秘密而已,相信看完张老师的解析,你一定有种如获至宝的感受,相信你会迫不及待的想让孩子也去体验一下!
今天要和大家分享四种数列求和的方法,分别是
1. 山顶数列求和;2. 去括号重组;3. 等比数列求和;4. 特殊数列求和;
在分享这些方法之前,我们需要先来复习一下我们之前学过的一个最简单的数列求和,那就是等差数列:就是任意相邻的两个数的差都相等的数列的求和问题。这个之前讲过,如果有不明白的可以去看张老师以前的视频讲解。
复习:等差数列求和
和=(首项+尾项)x项数÷2
尾项=首项+(项数-1)x公差
项数=(尾项-首项)÷公差+1
类型1:直接应用等差数列求和公式
类型2:先求出项数,再用求和公式
类型3:先求出尾项,再用求和公式
下面留3道练习题,同学们自己可以练习一下
- 1+4+7+10+13+16+19+22+25
2. 2+6+10+14+……+82
3. 有一列数按2,5,8,11,14……这样的规律排列,求前30个数的和。
分享:四种常见数列求和
- 1.山顶数列求和
1+2+3+……+97+98+99+98+97+……+3+2+1
方法1:等差数列求和公式计算
和=(首项+尾项)x项数÷2
原式=(1+98)x98÷2x2+99
=99x98+99
=99x98+99x1
=99x(98+1)
=99x99
=9801
方法2:首尾配对法
观察式子左边是1——98,右边是98——1,是两个对称的等差数列,所以用首尾配对法,1+98=99,2+97=99……,一共可以配成98个99,再加上中间的99,一共有99个99
原式=99x99=9801
找规律填空
1+2+3+2+1=9=3x3
1+2+3+4+3+2+1=16=4x4
1+2+3+4+5+4+3+2+1=( 25 )=( 5 )x( 5 )
1+2+3+……+n+……+3+2+1=( n )x( n )
上述数列中,左边如上山,右边如下山,最中间的数犹如山顶,所以这样的数列我们起名叫“山顶数列”。
山顶数列的和=山顶数x山顶数
如:1+2+3+……+9+……+3+2+1
这个数列就是一个标准的山顶数列,山顶为9,
所以,原式=9x9=81
注意:山顶数列必须从1开始到山顶,再从山顶到1,否则不能用山顶数乘山顶数求和。
- 2.去括号重组
(1+3+5+……+1989)-(2+4+6+……+1988)
观察:前面括号中是1至1989中的奇数,后面是1至1989中的偶数,偶数有1988÷2=994个,奇数有994+1=995个,所以我们可以分组计算,前边括号中的数从3开始,和后边括号中的数对应相减。
原式=1+(3-2)+(5-4)+(7-6)+……+(1989-1988)
=1+1+1+1+……+1
=1+994
=995
- 3.等比数列求和
例1、1+2+4+8+16+32+64+128+256
分析:这个题我们发现从第2个数开始,后边每个数是前边这个数的2倍,所以我们有两种思路:第一种是前边每个数加上它的1倍就等于后边的数,然后再和后边的相加又等于后边的数;第二种是前边的每个数如果乘2就等于后边的数了,下面我们看一下具体解析
方法1:借来还去法——先给原式加1,再在后边减去1
原式=1+1+2+4+8+16+32+64+128+256-1
=2+2+4+8+16+32+64+128+256-1
=4+4+8+16+32+64+128+256-1
……
=256+256-1
=512-1
=511
方法2:错位相减法
令S=1+2+4+8+16+32+64+128+256——(1)
等式两边同时乘2:
2S=2+4+8+16+32+64+128+256+512——(2)
用第(2)个式子减去第(1)个式子:相同的对应相减
S=512-1=511
例2、1+3+9+27+81+243+729+2187
分析:这个题从第2个数开始每个数是前边的3倍
思考:这个题还能用借来还去吗? 显然不可以
所以只能用错位相减法
令S=1+3+9+27+81+243+729+2187 ——(1)
3S= 3+9+27+81+243+729+2187+6561 ——(2)
(2)-(1):
2S=6561-1=6560
S=6560÷2=3280
总结:借来还去法只能用于加倍数列,即按增加1倍递增或递减。
- 4.特殊数列求和
(1)奇数数列
观察发现:1+3+5=9=3x3
1+3+5+7=16=4x4
1+3+5+7+9=25=5x5
……
1+3+5+……+(2n-1)=nxn(n为奇数的个数)
即:从1开始的连续奇数的和=个数x个数
(2)偶数数列
观察发现:2+4+6=12=3x4
2+4+6+8=20=4x5
2+4+6+8+10=30=5x6
……
2+4+6+8+……+2n=nx(n+1) (n为偶数的个数)
即:从2开始的连续的偶数的和=个数x(个数+1)
下面留几道练习题,请同学们课后自己做一下,有问题随时和张老师沟通,张老师一定耐心解答!
1.1+11+21+……+1991+2001+2011
2.2000+1999-1998-1997+1996+1995-1994-1993+……+4+3-2-1
3.(2014+2012+2010+……+6+4+2)-(1+3+5+……+2009+2011+2013)
4.(1+2+3+4+……+99+100)-(2+4+6+8+……+96+98)
5.1-2+3-4+5-6+……+1991-1992+1993
6.1000+999-998-997+996+995-994-993+……+104+103-102-101
7.先观察,再填空
(1)1+2+3+……+29+30+29+……+3+2+1=( )x( )=( )
(2)2+3+4+……+109+110+109+……+4+3+2+1=( )
(3)2+3+4+……+106+107+106+……+5+4+3=( )x( )-1-2-1=( )
8.求1——100中所有偶数的和
9.求1——100中所有奇数的和。