c语言偶数数列求和_几种常见数列求和一网打尽——快速提升小学计算能力

本文主要介绍了小学数学中数列求和的重要性和常用方法,包括等差数列、山顶数列、去括号重组、等比数列和特殊数列的求和。通过实例解析和练习题,帮助提升孩子的计算能力和解题技巧。
摘要由CSDN通过智能技术生成

小学数学中计算能力是最重要的能力,计算的方法、效率、思路等直接影响着以后的学习,只要方法通,很多东西就通了,这个方法以及解题的思路一直会持续到初中乃至高中的学习中去。然而这些方法并不难,是那么的巧妙,只是我们发现了蕴藏在计算中或者数字中的一些规律或者秘密而已,相信看完张老师的解析,你一定有种如获至宝的感受,相信你会迫不及待的想让孩子也去体验一下!

6e03861ccb0c77fdf62d5f8614ec11d6.png

让大脑去发散思维,寻找藏在数字中的秘密和美!

今天要和大家分享四种数列求和的方法,分别是

1. 山顶数列求和;2. 去括号重组;3. 等比数列求和;4. 特殊数列求和;

在分享这些方法之前,我们需要先来复习一下我们之前学过的一个最简单的数列求和,那就是等差数列:就是任意相邻的两个数的差都相等的数列的求和问题。这个之前讲过,如果有不明白的可以去看张老师以前的视频讲解。

cdc53519a852a12ba202188baa686d5b.png

复习:等差数列求和

和=(首项+尾项)x项数÷2

尾项=首项+(项数-1)x公差

项数=(尾项-首项)÷公差+1

类型1:直接应用等差数列求和公式

f2cab2aa3d6b82ecaca1780183b0c370.png

类型1:直接应用等差数列求和公式

类型2:先求出项数,再用求和公式

6a6238d195077a02abbeb92e950e90d7.png

类型2:先求出项数,再用求和公式

类型3:先求出尾项,再用求和公式

c02891be8e572f86fe98f53f3dd6ecb9.png

类型3:先求出尾项,再用求和公式

下面留3道练习题,同学们自己可以练习一下

  1. 1+4+7+10+13+16+19+22+25

2. 2+6+10+14+……+82

3. 有一列数按2,5,8,11,14……这样的规律排列,求前30个数的和。


分享:四种常见数列求和

  • 1.山顶数列求和

1+2+3+……+97+98+99+98+97+……+3+2+1

方法1:等差数列求和公式计算

和=(首项+尾项)x项数÷2

原式=(1+98)x98÷2x2+99

=99x98+99

=99x98+99x1

=99x(98+1)

=99x99

=9801

方法2:首尾配对法

观察式子左边是1——98,右边是98——1,是两个对称的等差数列,所以用首尾配对法,1+98=99,2+97=99……,一共可以配成98个99,再加上中间的99,一共有99个99

原式=99x99=9801

找规律填空

1+2+3+2+1=9=3x3

1+2+3+4+3+2+1=16=4x4

1+2+3+4+5+4+3+2+1=( 25 )=( 5 )x( 5 )

1+2+3+……+n+……+3+2+1=( n )x( n )

上述数列中,左边如上山,右边如下山,最中间的数犹如山顶,所以这样的数列我们起名叫“山顶数列”。

山顶数列的和=山顶数x山顶数

686636453184f2a798754a555efeeb2f.png

如:1+2+3+……+9+……+3+2+1

这个数列就是一个标准的山顶数列,山顶为9,

所以,原式=9x9=81

注意:山顶数列必须从1开始到山顶,再从山顶到1,否则不能用山顶数乘山顶数求和。

  • 2.去括号重组

(1+3+5+……+1989)-(2+4+6+……+1988)

观察:前面括号中是1至1989中的奇数,后面是1至1989中的偶数,偶数有1988÷2=994个,奇数有994+1=995个,所以我们可以分组计算,前边括号中的数从3开始,和后边括号中的数对应相减。

原式=1+(3-2)+(5-4)+(7-6)+……+(1989-1988)

=1+1+1+1+……+1

=1+994

=995

  • 3.等比数列求和

例1、1+2+4+8+16+32+64+128+256

分析:这个题我们发现从第2个数开始,后边每个数是前边这个数的2倍,所以我们有两种思路:第一种是前边每个数加上它的1倍就等于后边的数,然后再和后边的相加又等于后边的数;第二种是前边的每个数如果乘2就等于后边的数了,下面我们看一下具体解析

方法1:借来还去法——先给原式加1,再在后边减去1

原式=1+1+2+4+8+16+32+64+128+256-1

=2+2+4+8+16+32+64+128+256-1

=4+4+8+16+32+64+128+256-1

……

=256+256-1

=512-1

=511

方法2:错位相减法

令S=1+2+4+8+16+32+64+128+256——(1)

等式两边同时乘2:

2S=2+4+8+16+32+64+128+256+512——(2)

用第(2)个式子减去第(1)个式子:相同的对应相减

S=512-1=511

93110ad5f93eda138100d3ccf8b0621a.png

例2、1+3+9+27+81+243+729+2187

分析:这个题从第2个数开始每个数是前边的3倍

思考:这个题还能用借来还去吗? 显然不可以

所以只能用错位相减法

令S=1+3+9+27+81+243+729+2187 ——(1)

3S= 3+9+27+81+243+729+2187+6561 ——(2)

(2)-(1):

2S=6561-1=6560

S=6560÷2=3280

总结:借来还去法只能用于加倍数列,即按增加1倍递增或递减。

  • 4.特殊数列求和

(1)奇数数列

观察发现:1+3+5=9=3x3

1+3+5+7=16=4x4

1+3+5+7+9=25=5x5

……

1+3+5+……+(2n-1)=nxn(n为奇数的个数)

即:从1开始的连续奇数的和=个数x个数

(2)偶数数列

观察发现:2+4+6=12=3x4

2+4+6+8=20=4x5

2+4+6+8+10=30=5x6

……

2+4+6+8+……+2n=nx(n+1) (n为偶数的个数)

即:从2开始的连续的偶数的和=个数x(个数+1)

257ce93b0e880eb0755b11ab7b0b7173.png

下面留几道练习题,请同学们课后自己做一下,有问题随时和张老师沟通,张老师一定耐心解答!

1.1+11+21+……+1991+2001+2011

2.2000+1999-1998-1997+1996+1995-1994-1993+……+4+3-2-1

3.(2014+2012+2010+……+6+4+2)-(1+3+5+……+2009+2011+2013)

4.(1+2+3+4+……+99+100)-(2+4+6+8+……+96+98)

5.1-2+3-4+5-6+……+1991-1992+1993

6.1000+999-998-997+996+995-994-993+……+104+103-102-101

7.先观察,再填空

(1)1+2+3+……+29+30+29+……+3+2+1=( )x( )=( )

(2)2+3+4+……+109+110+109+……+4+3+2+1=( )

(3)2+3+4+……+106+107+106+……+5+4+3=( )x( )-1-2-1=( )

8.求1——100中所有偶数的和

9.求1——100中所有奇数的和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值