1948
年,香农(
Shannon
)用信息论的理论推导出了带宽受限且有高斯白噪
声干扰的信道的极限信息传输速率。
当用此速率进行传输时,
可以做到不出差错。
用公式表示,则信道的极限信息传输速率
C
可表达为
C
=
B log2
(
1+S/N
)
b/s
其中
B
为信道的宽度,
S
为信道内所传信号的平均功率,
N
为信道内部的高斯噪
声功率。
给出了信道信息传送速率的上限(比特每秒)和信道信噪比及带宽的关系。
香农定理可以解释现代各种无线制式由于带宽不同,
所支持的单载波最大吞吐量
的不同。
在有随机热噪声的信道上传输数据信号时,
信道容量
Rmax
与信道带宽
B
,信噪比
S/N
关系。注意这里的
log2
是以
2
为底的对数。
香农公式表明,
信道的带宽或信道中的信噪比越大,
则信息的极限传输速率
就越高。
它给出了信息传输速率的极限,
即对于一定的传输带宽
(以赫兹为单位)
和一定的信噪比,
信息传输速率的上限就确定了。
这个极限是不能够突破的。
要
想提高信息的传输速率,
或者必须设法提高传输线路的带宽,
或者必须设法提高
所传信号的信噪比,
此外没有其他任何办法。
至少到现在为止,
还没有听说有谁
能够突破香农公式给出的信息传输速率的极限。
香农定理就好比一个城市道路上的汽车的车速
(业务速率)
和什么有关系?
行车速度的影响一样,
除了和自己车的动力有关之外,
主要还受限于道路的宽度
(带宽)和车辆多少、红灯疏密等其他干扰因素(信噪比)。
俗话说:
“
有线的资源是无限的,而无线的资源却是有限的。
”
无线信道并不
是可以任意增加传送信息的速率,
它受其固有规律的制约,
就像城市道路上的车
一样不能想开多快就开多快,还受到道路宽度、其他车辆数量等因素影响。
如果能采取一定的措施,
则存信道条件一定的前提下,
使信道容量增大,
也
就是通信能力增强;
或者在保持通信容量一定的前提下,
能容忍更大的噪声功率,
也就是抗干扰能力增强。
信道容餐实际上表明了通信系统的通信能力,
而保证一
定误码率条件下通信容量的能力就表明了抗干扰能力。
所以,
香农公式表明了系
统的通信能力和抗干扰能力与传输信息所用带宽以及信噪比之间的关系。
从香农公式可以看出,
在单边噪声功率谱密度为一定的条件下,
一个给
定的信道容量可以通过增加带宽
w
而减小信号功率
s
的办法实现,也可以通过
增加信号功率而减小带宽的办法实现。
这就是说,
信道容量可以通过带宽与信号
功率或信噪比的互换而保持不变。
也可以说,
分别通过增加信号功率
s
和带宽
w
都可以提高信道容量
C
。
根据带宽与功率互换的这一原理,
应该尽可能扩展信号
的传输带宽,以提高系统的输出信噪比,这就是扩展频谱通信。比如,跳频通信
射频覆盖的带宽比信号的原始带宽大得多,
直扩后的信号带宽比商扩前的信号带
宽大得多。
香农公式告诉我们,
若要得到无限大的信息传输速率,
只有两个办法:
要么
使用无限大的传输带宽(这显然不可能),要么使信号的信噪比为无限大,即采
用没有噪声的传输信道或使用无限大的发送功率。