不等号属于不等式吗_不等式(组)含参问题:搞不懂这5大考点,中考吃大亏!...

2”求参数范围,还是根据有解、无解求参数范围,只要画数轴,能够在图上反应出解集,那问题基本上就迎刃而解了!"],[20,"\n","24:\"g04W\""],[20,"\n","24:\"8L7u\""],[20,"考点5","0:\"%234da8ee\"|8:1"],[20,"\n","24:\"yq50\"|7:1"],[20,"\n","24:\"SdKK\""],[20,"根据不等式(组)整数解的个数,求参数范围。"],[20,"\n","24:\"SfCz\""],[20,"\n","24:\"7nC4\""],[20,"【难度指数】⭐⭐⭐⭐⭐"],[20,"\n","24:\"TwiH\""],[20,"\n","24:\"aO7p\""],[20,"【对应视频】初中数学9.3复杂的含参不等式《依据整数解求参数》(以人教版为例)"],[20,"\n","24:\"tx72\""],[20,"\n","24:\"tXiV\""],[20,{"gallery":"https://uploader.shimo.im/f/3w5ctSyC28wbKS7N.gif"},"29:0|30:0|3:\"auto\"|4:\"auto\"|crop:\"\"|frame:\"none\"|ori-height:\"329\"|ori-width:\"612\""],[20,"\n","24:\"98uK\""],[20,"▲依据整数解求参数,"],[20,"\n","24:\"zB9H\""],[20,"完整讲解请在APP中查看"],[20,"\n","24:\"Gal7\""],[20,"\n","24:\"lOiQ\""],[20,"【学习指南】","8:1"],[20,"\n","24:\"821Z\""],[20,"\n","24:\"HNhU\""],[20,"根据不等式(组)整数解的个数求参数范围时,利用不等式的性质对原不等式(组)进行求解 ,即"],[20,"用含参数的式子表示出未知数的范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,"\n","24:\"IxRd\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"fg79\""],[20,"然后根据整数解的个数在数轴上"],[20,"找到参数的大致范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,{"inline-break":true}],[20,"\n","24:\"qI9r\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"再"],[20,"检验端点值","0:\"%234da8ee\"|8:1"],[20,"是否满足条件,即可得到参数范围。"],[20,"\n","24:\"NTgA\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"JqdS\""],[20,"乍一看有5个考点,好像很复杂的样子,但其实以上这些问题"],[20,"都跟解集有关,不过是同一题型的变式而已","0:\"%234da8ee\"|8:1"],[20,"。"],[20,"\n","24:\"DfT5\""],[20,"\n","24:\"2c61\""],[20,"在解决这类问题时,你只要能够根据解集的意义,利用不等式的性质"],[20,"化简","0:\"%234da8ee\"|8:1"],[20,"不等式(组),正确"],[20,"表示出","0:\"%234da8ee\"|8:1"],[20,"未知数的解集,利用数形结合在数轴上找到解集的大致范围,"],[20,"列式计算","0:\"%234da8ee\"|8:1"],[20,"就好了。"],[20,"\n","24:\"rS85\""],[20,"\n","24:\"2Yax\""],[20,"关于这些考点的更完整讲解,大家可以自行在洋葱学院APP中查看对应视频。"],[20,"\n","24:\"3l1o\""],[20,"\n","24:\"svSW\""],[20,"弄懂这类题的不同考点,归纳总结出方法,很多问题就没有想象的那么难了!今天的知识点大家学会了吗?不妨做做文章开头的中考题巩固一下吧~"],[20,"\n","24:\"4mbQ\""]]">

fb03b91cac3a53dd8e1b79698bb07383.gif

“参数参数,学生听到就发怵,题目类型花样百出,考试碰到就是拦路虎......”

近几年中考中,参数问题更是频频出现。比如其中的“不等式(组)中的含参问题”:

      d9fcca3797ac98bbe87cda86c102a686.png

▲ 点击查看大图

对于大多数版本而言,“不等式的性质及其应用”都属于七年级的学习范畴(北师大版为八年级下),但不少九年级的同学仍然被难倒!

别怕,洋葱君这就为大家贴心整理了“不等式(组)含参问题的5大考点”!不管你是什么学习情况,初一或是初三,都可以根据自身情况自行学习哦~

 考点1  

根据未知数解集或未知数之间的关系,求参数范围。

【难度指数】⭐⭐⭐

【对应视频】初中数学9.2.1《依据解求参数的取值范围》(以人教版为例)

▲依据解求参数的取值范围,

完整讲解请在APP中查看

2”求参数范围,还是根据有解、无解求参数范围,只要画数轴,能够在图上反应出解集,那问题基本上就迎刃而解了!"],[20,"\n","24:\"g04W\""],[20,"\n","24:\"8L7u\""],[20,"考点5","0:\"%234da8ee\"|8:1"],[20,"\n","24:\"yq50\"|7:1"],[20,"\n","24:\"SdKK\""],[20,"根据不等式(组)整数解的个数,求参数范围。"],[20,"\n","24:\"SfCz\""],[20,"\n","24:\"7nC4\""],[20,"【难度指数】⭐⭐⭐⭐⭐"],[20,"\n","24:\"TwiH\""],[20,"\n","24:\"aO7p\""],[20,"【对应视频】初中数学9.3复杂的含参不等式《依据整数解求参数》(以人教版为例)"],[20,"\n","24:\"tx72\""],[20,"\n","24:\"tXiV\""],[20,{"gallery":"https://uploader.shimo.im/f/3w5ctSyC28wbKS7N.gif"},"29:0|30:0|3:\"auto\"|4:\"auto\"|crop:\"\"|frame:\"none\"|ori-height:\"329\"|ori-width:\"612\""],[20,"\n","24:\"98uK\""],[20,"▲依据整数解求参数,"],[20,"\n","24:\"zB9H\""],[20,"完整讲解请在APP中查看"],[20,"\n","24:\"Gal7\""],[20,"\n","24:\"lOiQ\""],[20,"【学习指南】","8:1"],[20,"\n","24:\"821Z\""],[20,"\n","24:\"HNhU\""],[20,"根据不等式(组)整数解的个数求参数范围时,利用不等式的性质对原不等式(组)进行求解 ,即"],[20,"用含参数的式子表示出未知数的范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,"\n","24:\"IxRd\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"fg79\""],[20,"然后根据整数解的个数在数轴上"],[20,"找到参数的大致范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,{"inline-break":true}],[20,"\n","24:\"qI9r\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"再"],[20,"检验端点值","0:\"%234da8ee\"|8:1"],[20,"是否满足条件,即可得到参数范围。"],[20,"\n","24:\"NTgA\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"JqdS\""],[20,"乍一看有5个考点,好像很复杂的样子,但其实以上这些问题"],[20,"都跟解集有关,不过是同一题型的变式而已","0:\"%234da8ee\"|8:1"],[20,"。"],[20,"\n","24:\"DfT5\""],[20,"\n","24:\"2c61\""],[20,"在解决这类问题时,你只要能够根据解集的意义,利用不等式的性质"],[20,"化简","0:\"%234da8ee\"|8:1"],[20,"不等式(组),正确"],[20,"表示出","0:\"%234da8ee\"|8:1"],[20,"未知数的解集,利用数形结合在数轴上找到解集的大致范围,"],[20,"列式计算","0:\"%234da8ee\"|8:1"],[20,"就好了。"],[20,"\n","24:\"rS85\""],[20,"\n","24:\"2Yax\""],[20,"关于这些考点的更完整讲解,大家可以自行在洋葱学院APP中查看对应视频。"],[20,"\n","24:\"3l1o\""],[20,"\n","24:\"svSW\""],[20,"弄懂这类题的不同考点,归纳总结出方法,很多问题就没有想象的那么难了!今天的知识点大家学会了吗?不妨做做文章开头的中考题巩固一下吧~"],[20,"\n","24:\"4mbQ\""]]">【学习指南】

  • 先根据方程(组)解的意义,利用等式的性质对原方程(组)进行求解 ,即用含参数的式子表示出未知数

  • 然后借助题中给定的解的范围、或解的关系,列出不等式进行计算,即可得到参数范围。

 考点2  

未知数系数为常数时,根据不等式(组)的解集,求参数。

【难度指数】⭐⭐⭐⭐

【对应视频】初中数学9.2.1《依据解求参数的取值范围》(以人教版为例)

▲依据解求参数的取值范围,

完整讲解请在APP中查看

【学习指南】

  • 先根据不等式(组)解集的意义,利用不等式的性质对原不等式(组)进行求解 ,即用含参数的式子表示出未知数的范围

  • 然后借助题中给定的解集范围,通过“大于对应大于、小于对应小于”,即可列出等式得到参数。

考点2与考点1非常类似,核心都是需要理解“解/解集的意义”,对原式变形后,用含参的式子表示出未知数,再进一步求解。

考点3

未知数系数含参数时,根据不等式(组)的解集,求参数范围。

【难度指数】⭐⭐⭐⭐⭐

【对应视频】初中数学9.2.1《依据不等式的解集求参数》(以人教版为例) 

  9c464818b582c26d42b7463b145579e9.gif▲依据不等式的解集求参数,

完整讲解请在APP中查看

【学习指南】

  • 当不等式(组)中未知数的系数含参数时,要先根据给出的不等式(组)解集中不等号的方向判断出含参系数的正负

  • 然后将解集用参数表示出来,再与题目中的解集进行对应,得到关于参数的等式,再进行求解。

考点3与考点2最大的区别在于,考点2中,未知数的系数是常数,对不等式(组)变形时很容易判断不等号方向。

而考点3中未知数的系数含参数,所以解题时比考点2多了一步——要先判断含参系数的正负,后面的思路就和考点2一样了。

 考点4 

根据不等式(组)有解/无解的情况,求参数范围。

【难度指数】⭐⭐⭐⭐⭐

【对应视频】初中数学9.3.1《解集的分类讨论》、《求参数的取值范围》(以人教版为例)

      7a4c8280529cef3db6bf35ecde9cc5f5.gif

▲解集的分类讨论,

完整讲解请在APP中查看

▲求参数的取值范围,

完整讲解请在APP中查看

【学习指南】

  • 先根据不等式(组)解集的意义,利用不等式的性质对原不等式(组)进行求解 ,即用含参数的式子表示出未知数的范围;

  • 然后根据参数的分界点进行分类讨论

  • 再根据题中给出的有解、无解的情况求出参数范围。

这里考点4和考点2几乎如出一辙,不论是已知解集范围如“x>2”求参数范围,还是根据有解、无解求参数范围,只要画数轴,能够在图上反应出解集,那问题基本上就迎刃而解了!

 考点5  

 

根据不等式(组)整数解的个数,求参数范围。

【难度指数】⭐⭐⭐⭐⭐

【对应视频】初中数学9.3复杂的含参不等式《依据整数解求参数》(以人教版为例)

      ff9d80e819e380b6a905726571f8d12a.gif▲依据整数解求参数,

完整讲解请在APP中查看

【学习指南】

  • 根据不等式(组)整数解的个数求参数范围时,利用不等式的性质对原不等式(组)进行求解 ,即用含参数的式子表示出未知数的范围

  • 然后根据整数解的个数在数轴上找到参数的大致范围

2”求参数范围,还是根据有解、无解求参数范围,只要画数轴,能够在图上反应出解集,那问题基本上就迎刃而解了!"],[20,"\n","24:\"g04W\""],[20,"\n","24:\"8L7u\""],[20,"考点5","0:\"%234da8ee\"|8:1"],[20,"\n","24:\"yq50\"|7:1"],[20,"\n","24:\"SdKK\""],[20,"根据不等式(组)整数解的个数,求参数范围。"],[20,"\n","24:\"SfCz\""],[20,"\n","24:\"7nC4\""],[20,"【难度指数】⭐⭐⭐⭐⭐"],[20,"\n","24:\"TwiH\""],[20,"\n","24:\"aO7p\""],[20,"【对应视频】初中数学9.3复杂的含参不等式《依据整数解求参数》(以人教版为例)"],[20,"\n","24:\"tx72\""],[20,"\n","24:\"tXiV\""],[20,{"gallery":"https://uploader.shimo.im/f/3w5ctSyC28wbKS7N.gif"},"29:0|30:0|3:\"auto\"|4:\"auto\"|crop:\"\"|frame:\"none\"|ori-height:\"329\"|ori-width:\"612\""],[20,"\n","24:\"98uK\""],[20,"▲依据整数解求参数,"],[20,"\n","24:\"zB9H\""],[20,"完整讲解请在APP中查看"],[20,"\n","24:\"Gal7\""],[20,"\n","24:\"lOiQ\""],[20,"【学习指南】","8:1"],[20,"\n","24:\"821Z\""],[20,"\n","24:\"HNhU\""],[20,"根据不等式(组)整数解的个数求参数范围时,利用不等式的性质对原不等式(组)进行求解 ,即"],[20,"用含参数的式子表示出未知数的范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,"\n","24:\"IxRd\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"fg79\""],[20,"然后根据整数解的个数在数轴上"],[20,"找到参数的大致范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,{"inline-break":true}],[20,"\n","24:\"qI9r\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"再"],[20,"检验端点值","0:\"%234da8ee\"|8:1"],[20,"是否满足条件,即可得到参数范围。"],[20,"\n","24:\"NTgA\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"JqdS\""],[20,"乍一看有5个考点,好像很复杂的样子,但其实以上这些问题"],[20,"都跟解集有关,不过是同一题型的变式而已","0:\"%234da8ee\"|8:1"],[20,"。"],[20,"\n","24:\"DfT5\""],[20,"\n","24:\"2c61\""],[20,"在解决这类问题时,你只要能够根据解集的意义,利用不等式的性质"],[20,"化简","0:\"%234da8ee\"|8:1"],[20,"不等式(组),正确"],[20,"表示出","0:\"%234da8ee\"|8:1"],[20,"未知数的解集,利用数形结合在数轴上找到解集的大致范围,"],[20,"列式计算","0:\"%234da8ee\"|8:1"],[20,"就好了。"],[20,"\n","24:\"rS85\""],[20,"\n","24:\"2Yax\""],[20,"关于这些考点的更完整讲解,大家可以自行在洋葱学院APP中查看对应视频。"],[20,"\n","24:\"3l1o\""],[20,"\n","24:\"svSW\""],[20,"弄懂这类题的不同考点,归纳总结出方法,很多问题就没有想象的那么难了!今天的知识点大家学会了吗?不妨做做文章开头的中考题巩固一下吧~"],[20,"\n","24:\"4mbQ\""]]">
  • 检验端点值是否满足条件,即可得到参数范围。

乍一看有5个考点,好像很复杂的样子,但其实以上这些问题都跟解集有关,不过是同一题型的变式而已

在解决这类问题时,你只要能够根据解集的意义,利用不等式的性质化简不等式(组),正确表示出未知数的解集,利用数形结合在数轴上找到解集的大致范围,列式计算就好了。

关于这些考点的更完整讲解,大家可以自行在洋葱学院APP中查看对应视频。

弄懂这类题的不同考点,归纳总结出方法,很多问题就没有想象的那么难了!今天的知识点大家学会了吗?不妨做做文章开头的中考题巩固一下吧~‍

- END -
精彩文章推荐: 2”求参数范围,还是根据有解、无解求参数范围,只要画数轴,能够在图上反应出解集,那问题基本上就迎刃而解了!"],[20,"\n","24:\"g04W\""],[20,"\n","24:\"8L7u\""],[20,"考点5","0:\"%234da8ee\"|8:1"],[20,"\n","24:\"yq50\"|7:1"],[20,"\n","24:\"SdKK\""],[20,"根据不等式(组)整数解的个数,求参数范围。"],[20,"\n","24:\"SfCz\""],[20,"\n","24:\"7nC4\""],[20,"【难度指数】⭐⭐⭐⭐⭐"],[20,"\n","24:\"TwiH\""],[20,"\n","24:\"aO7p\""],[20,"【对应视频】初中数学9.3复杂的含参不等式《依据整数解求参数》(以人教版为例)"],[20,"\n","24:\"tx72\""],[20,"\n","24:\"tXiV\""],[20,{"gallery":"https://uploader.shimo.im/f/3w5ctSyC28wbKS7N.gif"},"29:0|30:0|3:\"auto\"|4:\"auto\"|crop:\"\"|frame:\"none\"|ori-height:\"329\"|ori-width:\"612\""],[20,"\n","24:\"98uK\""],[20,"▲依据整数解求参数,"],[20,"\n","24:\"zB9H\""],[20,"完整讲解请在APP中查看"],[20,"\n","24:\"Gal7\""],[20,"\n","24:\"lOiQ\""],[20,"【学习指南】","8:1"],[20,"\n","24:\"821Z\""],[20,"\n","24:\"HNhU\""],[20,"根据不等式(组)整数解的个数求参数范围时,利用不等式的性质对原不等式(组)进行求解 ,即"],[20,"用含参数的式子表示出未知数的范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,"\n","24:\"IxRd\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"fg79\""],[20,"然后根据整数解的个数在数轴上"],[20,"找到参数的大致范围","0:\"%234da8ee\"|8:1"],[20,";"],[20,{"inline-break":true}],[20,"\n","24:\"qI9r\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"再"],[20,"检验端点值","0:\"%234da8ee\"|8:1"],[20,"是否满足条件,即可得到参数范围。"],[20,"\n","24:\"NTgA\"|bullet-id:\"sOag\"|bullet:\"circle\""],[20,"\n","24:\"JqdS\""],[20,"乍一看有5个考点,好像很复杂的样子,但其实以上这些问题"],[20,"都跟解集有关,不过是同一题型的变式而已","0:\"%234da8ee\"|8:1"],[20,"。"],[20,"\n","24:\"DfT5\""],[20,"\n","24:\"2c61\""],[20,"在解决这类问题时,你只要能够根据解集的意义,利用不等式的性质"],[20,"化简","0:\"%234da8ee\"|8:1"],[20,"不等式(组),正确"],[20,"表示出","0:\"%234da8ee\"|8:1"],[20,"未知数的解集,利用数形结合在数轴上找到解集的大致范围,"],[20,"列式计算","0:\"%234da8ee\"|8:1"],[20,"就好了。"],[20,"\n","24:\"rS85\""],[20,"\n","24:\"2Yax\""],[20,"关于这些考点的更完整讲解,大家可以自行在洋葱学院APP中查看对应视频。"],[20,"\n","24:\"3l1o\""],[20,"\n","24:\"svSW\""],[20,"弄懂这类题的不同考点,归纳总结出方法,很多问题就没有想象的那么难了!今天的知识点大家学会了吗?不妨做做文章开头的中考题巩固一下吧~"],[20,"\n","24:\"4mbQ\""]]" style="color: rgb(23, 151, 235); font-size: 15px; font-style: italic; caret-color: rgb(62, 62, 62);">1、 《 “我数学很烂,但却以133分跃居班级第一”: 学习的捷径,我只说这一点! 》 2、《中考虽苦,但她比90%的人都努力|来自初三女孩的“特殊”手写信》 3、《从40分提高到106分!数学进阶之路,这个初一女生只用了两个月》 d6f2a5ef27601e4608b1afe818bef232.png fee90c4577fff0b56deb6d7f0b80444a.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值