matlab ode45 二阶微分方程,ode45解二阶微分方程

该博客介绍了如何使用MATLAB的ode45函数,基于四阶Runge-Kutta方法,来解决高阶和二阶常微分方程,包括 odefile的编写和微分方程的转化。内容涵盖了ode45的使用方法及其在非刚性和刚性问题中的应用。

(2)).*y(1)+0.0001*(1-y(2)).^2; dy2dx = -1e4*dy1dx + 3000*(1-y(2)).^2; f = [dy1dx; dy2dx]; 高阶微分方程odefile的编写求解: ......

Runge-Kutta法是常微分方程的一种经典解法 ? MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn?1 ? yn ? h 6 (k1 ? 2k2 ? 2k3 ? k4 ) k1 ? f (......

Runge-Kutta法是常微分方程的一种经典解法 ? MATLAB 对应命令:ode45 四阶Runge-Kutta公式 h yn ?1 ? yn ? (k1 ? 2k 2 ? 2k3 ? k 4 ) 6 k1 ? ...

ODE) 初值问题---给出初始值 边值问题---给出边界条件 与初值常微分方程解算有关的指令 ode23 ode45 ode113 ode23t ode15s ode23s ode23tb 一.解ODE的基......

(tn1) 方法 的近似值 yn1 时只用到 tn , yn ,是自开始 Runge-Kutta法是常微分方程的一种经典解法 MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn1 yn h......

(tn1) 的近似值 yn1 时只用到 tn , yn ,是自开始方法 Runge-Kutta法是常微分方程的一种经典解法 MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn1 yn h ......

[dy1dx; dy2dx]; 高阶微分方程odefile的编写 求解: y&q...

t ? 10 s 这是一个二阶微分方程组,可以引进变量 x 2 ? t ? ? x1 ? t ? ,由此 ODE 可以化成如下形式 本文参考 薛定宇《控制系统计算机辅助设计——......

《MATLAB 语言及应用》 大作业姓名: 学号: 学院: 班级: 题目编号: 2013 年 10 月 13 4 阶 Runge-Kutta 法求解一阶常微分方程。一、 Runge-Kutta 法的数学......

《MATLAB 语言及应用》 大作业姓名: 学号: 学院: 班级: 题目编号: 2013 年 10 月 13 4 阶 Runge-Kutta 法求解一阶常微分方程。一、 Runge-Kutta ......

能熟练使用 dsolve 函数解析求解常微分方程; 3. 能熟练运用 ode45、ode15s 求解器分别数值求解非刚性和刚性常微分方程; 4. 学习用求解器来绘制相图的方法。 二......

用字符串表示常微分方程,自变量缺省时为t,导数用 D表示微分。y的2阶导数用D2y表示,依此类推。 如何调用? [T,Y,TE,YE,IE]=solver('odefun',tspan,y0,......

4.解微分方程的 MATLAB 命令 MATLAB 中主要用 dsolve 求符号解析解,ode45,ode23,ode15s 求数值解。 s=dsolve(‘方程 1’, ‘方程 2’,…,’初始条件 1’......

常微分方程数值解 二、初值问题求解函数 2. 函数介绍函数 ode45 ode23 问题类型 精确度 非刚性 非刚性 中等 低 说明 采用算法为4-5阶Runge-Kutta法,大多数 ......

ode15s 短 ode23tb 刚性 梯形算法;低精度 当精度较低时,计算 时间比 ode15s 短 说明:ode23、ode45 就是极其常用得用来求解非刚性得标准形式得一阶微分 方程......

ode45 是极其常用的用来求解非刚性的标准形式的一阶微分 方程(组)的初值问题的解的 Matlab 常用程序,其中: ode23 采用龙格-库塔 2 阶算法,用 3 阶公式作误差......

2.3. Euler 法实用性 从图可以看出来一阶方法精确度非常差,基本上是无法用到实际工程中的,因此显式和 隐式 Euler 法只是提供一种对微分方程求解的思想。从图......

解增长 解衰减解振荡 29 MATLAB求常微分方程数值解的函数基于龙格-库塔法, MATLAB求常微分方程数值解 的函数,一般调用格式为: [t,y]=ode23('fname',tspan,......

Matlab解微分方程 除了上述的已知ODE外,还须有起始条件 y0=y(x0)才能解方程式,即是在x=x0时, y(x)=y0。上述各个方程式 的解析解 (analytical solution) ......

用Matlab求常微分方程的数值解 [t,x]=solver(’f’,ts,x0,options)自变 量值 函数 值 ode45 ode23 ode113 ode15s ode23s 由待解 方程写 成的m文件名......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值