(2)).*y(1)+0.0001*(1-y(2)).^2; dy2dx = -1e4*dy1dx + 3000*(1-y(2)).^2; f = [dy1dx; dy2dx]; 高阶微分方程odefile的编写求解: ......
Runge-Kutta法是常微分方程的一种经典解法 ? MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn?1 ? yn ? h 6 (k1 ? 2k2 ? 2k3 ? k4 ) k1 ? f (......
Runge-Kutta法是常微分方程的一种经典解法 ? MATLAB 对应命令:ode45 四阶Runge-Kutta公式 h yn ?1 ? yn ? (k1 ? 2k 2 ? 2k3 ? k 4 ) 6 k1 ? ...
ODE) 初值问题---给出初始值 边值问题---给出边界条件 与初值常微分方程解算有关的指令 ode23 ode45 ode113 ode23t ode15s ode23s ode23tb 一.解ODE的基......
(tn1) 方法 的近似值 yn1 时只用到 tn , yn ,是自开始 Runge-Kutta法是常微分方程的一种经典解法 MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn1 yn h......
(tn1) 的近似值 yn1 时只用到 tn , yn ,是自开始方法 Runge-Kutta法是常微分方程的一种经典解法 MATLAB 对应命令:ode45 四阶Runge-Kutta公式 yn1 yn h ......
[dy1dx; dy2dx]; 高阶微分方程odefile的编写 求解: y&q...
t ? 10 s 这是一个二阶微分方程组,可以引进变量 x 2 ? t ? ? x1 ? t ? ,由此 ODE 可以化成如下形式 本文参考 薛定宇《控制系统计算机辅助设计——......
《MATLAB 语言及应用》 大作业姓名: 学号: 学院: 班级: 题目编号: 2013 年 10 月 1