matlab曲线拟合sse等含义,matlab曲线拟合sse等含义

a7f4a3f590493a1e451dd952a488fd7c.gif matlab曲线拟合sse等含义

(2页)

a3864233-22fe-46f9-a430-b39d20fbbe2b1.gif

本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!

8.90 积分

使用过 Matlab 的拟合、优化和统计等工具箱的网友,会经常遇到下面几个名词:SSE(和方差、误差平方和):The sum of squares due to error MSE(均方差、方差):Mean squared error RMSE(均方根、标准差):Root mean squared error R-square(确定系数):Coefficient of determination Adjusted R-square:Degree-of-freedom adjusted coefficient of determination下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!一、SSE(和方差) 该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下SSE 越接近于越接近于 0,说明模型选择和拟合更好,数据预测也越成功,说明模型选择和拟合更好,数据预测也越成功。接下来的 MSE 和 RMSE 因为和 SSE 是同出一宗,所以效果一样二、MSE(均方差) 该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是 SSE/n,和 SSE 没 有太大的区别,计算公式如下三、RMSE(均方根) 该统计参数,也叫回归系统的拟合标准差,是 MSE 的平方根,就算公式如下在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。 从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!四、R-square(确定系数) 在讲确定系数之前,我们需要介绍另外两个参数 SSR 和 SST,因为确定系数就是由它们两 个决定的 (1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式 如下(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定 义为 SSR 和 SST 的比值,故其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定 系数”的正常取值范围为[0 1],越接近 1,表明方程的变量对 y 的解释能力越强,这个模型 对数据拟合的也较好 关 键 词: matlab 曲线拟合 sse 含义

4d91c43bfc72ca913299809b07b4968f.gif  天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值