matlab曲线拟合sse等含义
(2页)
本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!
8.90 积分
使用过 Matlab 的拟合、优化和统计等工具箱的网友,会经常遇到下面几个名词:SSE(和方差、误差平方和):The sum of squares due to error MSE(均方差、方差):Mean squared error RMSE(均方根、标准差):Root mean squared error R-square(确定系数):Coefficient of determination Adjusted R-square:Degree-of-freedom adjusted coefficient of determination下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!一、SSE(和方差) 该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下SSE 越接近于越接近于 0,说明模型选择和拟合更好,数据预测也越成功,说明模型选择和拟合更好,数据预测也越成功。接下来的 MSE 和 RMSE 因为和 SSE 是同出一宗,所以效果一样二、MSE(均方差) 该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是 SSE/n,和 SSE 没 有太大的区别,计算公式如下三、RMSE(均方根) 该统计参数,也叫回归系统的拟合标准差,是 MSE 的平方根,就算公式如下在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。 从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!四、R-square(确定系数) 在讲确定系数之前,我们需要介绍另外两个参数 SSR 和 SST,因为确定系数就是由它们两 个决定的 (1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式 如下(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定 义为 SSR 和 SST 的比值,故其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定 系数”的正常取值范围为[0 1],越接近 1,表明方程的变量对 y 的解释能力越强,这个模型 对数据拟合的也较好 关 键 词: matlab 曲线拟合 sse 含义
天天文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。