mc服务器钓鱼系统,钓鱼 - Minecraft Wiki,最详细的官方我的世界百科

在Minecraft中,钓鱼是一种获取物品的方式,包括各种鱼类和潜在的宝藏。玩家需要使用钓鱼竿,等待浮漂下沉的时机收杆。钓鱼的成功率受多种因素影响,如饵钓魔咒、天气、光照条件和钓鱼地点。钓到的物品有鱼、垃圾和宝藏,宝藏中可能包含附魔书、鞍等稀有物品。在特定生物群系,如丛林,钓鱼有特殊概率掉落物。钓鱼竿有耐久度,可通过经验修补进行修复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

钓鱼(Fishing)是玩家通过使用钓鱼竿来获取物品的过程,通常会获得鱼。

e3e003ca2c9f428b9c6206dea3d6893e.png 等鱼上钩的过程,需要耐心和集中注意力。

捕鱼[]

72b8b87acd17288d0df83400510626ac.png 基岩版中立体的浮漂。

06ec848976baaf752d0ce3dce7e8892f.png 一个新获得的饵钓II、耐久III和海之眷顾II钓鱼竿。

玩家需要通过使用钓鱼竿,将浮漂投入任意水体来钓鱼,这对玩家所处的位置没有限制。鱼可以从小、浅或人工的水池中钓到。

浮漂入水后,周围会随机出现水花粒子。钓鱼时,玩家需注意浮漂的运动来掌握收杆的时机。

浮漂入水100-600刻(5-30秒)后会突然下沉,此时玩家收杆即可将物品钓出。

每级饵钓魔咒会减少5秒的等待时间。如果这导致等待时间小于0,则系统会在下一刻生成一个新的等待时间。

如果浮漂没有暴露在日光或月光下,等待时间会变为原来的约2倍(等待时间在每刻都有50%的几率不会减少)。否则,浮漂上方的所有方块都必须能够使阳光透过,这些方块包括玻璃和绊线,但不包括树叶。

如果浮漂暴露在雨中,等待时间会缩短约20%(等待时间每刻都有25%几率减少2刻而非1刻)。此时浮漂必须处于正在下雨的生物群系中,且上方的方块不会阻挡其运动(例如火把和绊线)。

等待若干秒后,一串气泡粒子会在浮漂附近出现,并朝着浮漂前进(若视频设置中粒子效果被设置为最少,则该粒子不会出现)。1-4秒后气泡粒子会到达浮漂,然后浮漂会突然下沉,此时玩家需使用钓鱼竿以收回鱼线。收竿时间只有约半秒,如果错过了这段时间,玩家可以重新抛竿,或让浮漂在留在水中,等待下一次上钩。

成功钓鱼后会有一条生鳕鱼、生鲑鱼、河豚、热带鱼、一个垃圾或者宝藏(见下面垃圾与宝藏章节)飞向玩家。通常情况下会直接被玩家获得,但如果有方块阻挡,则会偏移。

成功钓鱼后也能获得1-6经验。

鱼线会在距离玩家32格外消失,如果玩家此时停止手持鱼竿,鱼竿不会因此减少耐久度。

如果钓鱼竿在水下被使用,浮漂会上浮至水面,除非被方块阻挡或者碰到了生物(例如鱿鱼)。

收回钓鱼竿会减少耐久度,见下面。

垃圾与宝藏[]

除了鱼,玩家偶尔也会钓到宝藏或垃圾。未附魔的钓鱼竿有85%几率钓到鱼,10%几率钓到垃圾,5%几率钓到宝藏。海之眷顾附魔能降低钓到垃圾的几率,增加钓到宝藏的几率。

在Java版中,钓鱼时,宝藏战利品只能通过在开阔水域钓鱼获得。开阔水域的检测机制如下:

浮漂周围5x4x5区域这一层全部是水(必须是水源方块、无碰撞箱的含水方块,可以是气泡柱)。

这一层全部是空气或睡莲。

至少有一个水层,所有水层必须全部在空气层下方。

从浮漂落入水中到收起鱼竿前这段时间里,浮漂都必须满足以上条件。

若浮漂位置不满足上述条件,玩家只能钓到鱼和垃圾。

丛林群系以外的捕获概率

类别

该类别中的概率

无海之眷顾的几率

海之眷顾I

海之眷顾II

海之眷顾III

权重

85%

84.8%

84.7%

84.5%

60%

51.0%

50.9%

50.8%

50.7%

25%

21.3%

21.2%

21.2%

21.1%

2%

1.7%

1.7%

1.7%

1.7%

13%

11.1%

11.0%

11.0%

11.0%

宝藏

权重

5%

7.1%

9.2%

11.3%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

垃圾

权重

10%

8.1%

6.1%

4.2%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

2.4% (2⁄83)

0.2%

0.2%

0.1%

0.1%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

6.0% (5⁄83)

0.6%

0.5%

0.4%

0.3%

6.0% (5⁄83)

0.6%

0.5%

0.4%

0.3%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

墨囊 (10)

1.2% (1⁄83)

0.1%

0.1%

0.1%

0.1%

12.0% (10⁄83)

1.2%

1.0%

0.7%

0.5%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

在丛林群系中的捕获概率

类别

该类别中的几率

未附魔的几率

海之眷顾I

海之眷顾II

海之眷顾III

权重

85%

84.8%

84.7%

84.5%

60%

51.0%

50.9%

50.8%

50.7%

40%[仅BE]

25%[仅JE]

34.0%[仅BE]

21.3%[仅JE]

33.9%[仅BE]

21.2%[仅JE]

33.9%[仅BE]

21.2%[仅JE]

33.8%[仅BE]

21.1%[仅JE]

2%

1.7%

1.7%

1.7%

1.7%

13%

11.1%

11.0%

11.0%

11.0%

宝藏

权重

5%

7.1%

9.2%

11.3%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

垃圾

权重

10%

8.1%

6.1%

4.2%

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

9.7% (10⁄103)

1.0%

0.8%

0.6%

0.4%

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

1.9% (2⁄103)[仅BE]

2.2% (2⁄93)[仅JE]

0.2%

0.2%

0.1%

0.1%

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

4.9% (5⁄103)[仅BE]

5.4% (5⁄93)[仅JE]

0.5%

0.4%

0.3%

0.2%

4.9% (5⁄103)[仅BE]

5.4% (5⁄93)[仅JE]

0.5%

0.4%

0.3%

0.2%

9.7% (10⁄103)[仅BE]

10.8% (10⁄93[仅JE])

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

墨囊 (10)

1.0% (1⁄103)[仅BE]

1.1% (1⁄93)[仅JE]

0.1%

0.1%

0.1%

0.04%[仅BE]

0.05%[仅JE]

9.7% (10⁄103)[仅BE]

10.8% (10⁄93)[仅JE]

1.0%[仅BE]

1.1%[仅JE]

0.8%[仅BE]

0.9%[仅JE]

0.6%[仅BE]

0.7%[仅JE]

0.4%[仅BE]

0.5%[仅JE]

16.7% (1⁄6)

0.7%

1.0%

1.3%

1.6%

备注[]

浮漂所在高度及下方1格共5×2×5区域以及上方5×2×5区域。

该几率不随附魔等级而改变。

从宝藏类别中钓到的弓和钓鱼竿会被附魔,但也有耐久损耗。附魔概率与30级的附魔台相同。这些附魔也可以包含无法从附魔台中获取的宝藏附魔。

附魔概率与30级的附魔台相同,但有多个魔咒附魔的几率没有减少。这些附魔也可以包含无法从附魔台中获取的宝藏附魔。

从垃圾类别中钓到的钓鱼竿和皮革靴子会有10%–100%的耐久损耗,且未附魔。

只有当玩家在丛林群系(包括其所有变种)中钓鱼时,才会如此获得钓鱼战利品。

在基岩版中,玩家在丛林群系中钓鱼时,能获得的鱼只有鳕鱼和鲑鱼。

钓鱼竿耐久度[]

钓鱼竿能在破损前使用65次,也可以在耐久和经验修补魔咒下使用更多次数。

抛竿后如果浮漂在空气中或在水中,则不会减少耐久度。

成功钓鱼或钓到垃圾/宝藏后减少1耐久度。

抛竿后浮漂勾到了固体方块则会减少2耐久度。

勾住掉落物会减少3耐久度。

勾住除掉落物外的实体会减少4耐久度。

带有经验修补的钓鱼竿近乎于具有无限的耐久度,即使开始时钓鱼竿接近损坏。因为成功钓鱼后玩家都会获得经验,钓鱼杆将不断地被修复。

耐久度损失发生在收回鱼钩时,而不是触碰物体时,因此磨损可以通过切换到另一个物品栏而不是收回鱼线来避免。

历史[]

?加入了钓鱼机制。

现在玩家每钓到一条鱼都能得到经验值。

大规模地改进了钓鱼奖励和机制,有新的奖励,包括附魔书、鞍、附魔钓鱼竿、命名牌和更多。

鱼在接近浮漂时会出现粒子。

现在有几率获得“坏”的物品(垃圾),例如木棍、骨头等。

墨囊现在为10个1点权重,而不是1个10点权重。

加入了鹦鹉螺壳,可以在钓鱼时作为宝藏获得。

加入了竹子,可以在丛林里钓鱼时作为垃圾获得。

宝藏战利品现在只能通过在开放性水域中钓鱼获得。开放性水域需浮漂周围5×4×5的区域中只能存在空气、水源或没有碰撞箱的含水方块,且气泡柱和睡莲都不能存在。

调整了开阔水域的检测机制,现在要求浮漂周围区域的每一层都只能有空气或者只能有水,且睡莲和气泡柱可分别算作空气和水。

现在睡莲被视为垃圾,而不再被视为宝藏。

加入了钓鱼机制。

钓鱼奖励在钓到时能被附魔。

加入了鹦鹉螺壳,可以在钓鱼时作为宝藏获得。

丛林里的钓鱼战利品被更改了。在丛林里钓鱼时,所奖励的鱼只有鳕鱼和鲑鱼。

加入了竹子,可以在丛林里钓鱼时作为垃圾获得。

现在可可豆可以在丛林里钓鱼时作为垃圾获得。

现在钓鱼拥有粒子效果。当玩家收竿之前,会有气泡从远处向浮漂快速接近以模拟一条鱼向浮漂游动。

现在钓鱼能钓出垃圾和宝藏。

漏洞[]

关于“钓鱼”的漏洞由漏洞追踪器维护,请在此汇报漏洞。

你知道吗[]

如果钓鱼者的物品栏是满的,钓到的物品会穿过该玩家,继续往后飞一段距离才掉落。

当玩家手持的钓鱼竿切换到另一个钓鱼竿时,鱼线和浮漂不会收回,而是直接跟着切换。这意味着能用一个钓鱼竿钓鱼,另一个钓鱼竿收竿,消耗的是后者的耐久度。

因此,当玩家有一个耐久度很低的高等级饵钓鱼竿(通常来源于钓鱼)和一个耐久足够的高等级海之眷顾钓鱼竿,可以先用前者吸引鱼上钩,再立即切换到后者收竿以便更容易获得宝藏,并且消耗后者的耐久度,这样就可以避免修补钓鱼竿时经验值的额外浪费。

如果浮漂离岸边太近,鱼上钩时的气泡粒子也可以出现在陆地上。

按下F1后,玩家手持的钓鱼竿会被隐藏,但鱼线和浮漂仍可见。

幸运属性可以增加钓到宝藏的几率,同时降低钓到其他战利品的几率。幸运状态效果和海之眷顾通过增加玩家的幸运属性值来影响钓鱼。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提高模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值