篇一 : 傅里叶变换的Matlab代码与注释
傅里叶变换的Matlab代码与注释 收藏
%Data 为一维采样数组
% Fs 为采样频率
Data_length=length(Data);
% DFT需要的采样点数为2的幂指数,但是输入的点数有可能是一个一般整数,于是找一个离指定点数最近的2的幂指数用来做DFT
NFFT = 2^nextpow2(Data_length);
% 生成结果的x轴,即频域。正常出来的频谱是左右对称的,为便于处理只要前半个域。
F_domain = (Fs/2)*linspace(0,1,NFFT/2);
% FFT变换
Y = fft(Data,NFFT)/Data_length;
% 幅值
Amp =2*abs(Y(1:NFFT/2));
subplot(211);
plot(F_domain,Amp);
title('频谱')
xlabel('频率(Hz)')
ylabel('频谱幅值')
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/vastsmile/archive/2010/07/11/5712210.aspx
篇二 : 从MATLAB帮助文档里扒下来的例子之——傅里叶变换用
傅里叶变换的一大用途是从混杂的时域信号中找出其中各频率成分的分布。
以一个由50Hz、120Hz两个频率正弦信号和随机噪声叠加得到的信号为例(采样频率1000Hz):
A common use of Fourier transforms is to find the frequen