欢迎大家订阅《教你用 Python 进阶量化交易》专栏!为了能够提供给大家更轻松的学习过程,笔者在专栏内容之外已陆续推出一些手记来辅助同学们学习本专栏内容,目前推出的扩展篇链接如下:
股票投资中收益和风险始终存在着不确定性,对于理性投资者来说,他们倾向于在风险和收益之间达到均衡点。对于单只股票来说,在回测中使用夏普比率可以很好地去综合考虑收益与风险之间的关系。而对于多只股票组合投资时,会引入基金经理常常需要考虑的问题——仓位如何分配?
本节给大家分享一个经典的模型——Markowitz均值-方差投资组合理论模型,一起来了解下如何运用Markowitz模型在多种资产上确定最优的投资比例。
1952年,美国芝加哥大学的经济学家Markowitz应用了数学中的均值、方差概念来定义资产组合中收益和风险这两个关键因素,从而系统地阐述了资产组合和选择问题,标志着现代资产组合理论(Modern Portfolio Theory,简称MPT)的开端。
该理论认为,由于资产投资的风险在于收益的不确定性,因此可将收益率视为一个随机变量,投资组合的期望收益是该随机变量的期望值,收益的波动率用随机变量的方差/标准差来表示,以此衡量投资组合的风险。
在波动率为横坐标、收益率为纵坐标的二维平面中描绘各种优化投资组合,从而形成了一条曲线。这条曲线在最小方差点以上的部分就是著名的Markowitz投资组合“有效前沿”(Efficient Frontier,有效边界),对应的投资组合称为有效投资组合。
根据投资组合理论,我们可以对多只股票(资产)的组合配置进行以下的优化过程:
获取多只股票数据,分析股票的收益率和波动率
生成大量随机权重的收益/风险组合
找到风险最小时的投资组合
找到有效边界(有效前沿)
找到夏普率较高的随机组合,即收益-风险均衡点
首先我们选取002372伟星新材、000876新希望、000851高鸿股份、600797浙大网新、000651格力电器这5只股票进行分析,并且将代码名称以列表格式存储,如下所示:
关于找一找教程网
本站文章仅代表作者观点,不代表本站立场,所有文章非营利性免费分享。
本站提供了软件编程、网站开发技术、服务器运维、人工智能等等IT技术文章,希望广大程序员努力学习,让我们用科技改变世界。
[Python进阶量化交易专栏场外篇23-Markowitz实现股票最优组合]http://www.zyiz.net/tech/detail-115466.html
赞(0)
共有
条评论
网友评论