Target xxx is out of bounds.

在采用pytorch进行训练时,最后计算cross entropy损失时会报错。
全连接层最终的维度num_classes表示的是类别的个数,但是在进行自定义数据集的标签设置时,不能从1开始,而是从0开始。如一共有四类,则标签类别为0,1,2,3。标注范围为[0, num_classes-1],一旦超出这个范围则会报错。

在pytorch中,输入数据形式时[batch_size, channel, H, W],在lstm模块中如果不设置batch_first=True,则需要将tensor的batch_size和seq_len维度进行交换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值