​AI数学进阶:60天Python实践计划(小学→进阶)​

AI数学进阶:60天Python实践计划(小学→进阶)

目标:适合有一定基础的学习者,从小学数学逐步进阶到线性代数、微积分、概率统计、优化算法等AI核心数学知识,每日1-2小时,60天后掌握AI数学进阶与提升,并能用Python实现相关算法。

特色
Python代码贯穿始终(每课都有Python实现)
零基础友好但进阶提升(从基础→进阶,无重复内容)
AI应用场景结合(图像处理、机器学习、神经网络基础)


📅 60天学习计划(每日1-2小时)

🔹 第1阶段:基础数学强化(Day 1-15)

目标:巩固小学数学,掌握基础代数、几何,为后续学习铺路。

数学知识点
Day主题核心概念
1数的运算分数、小数、百分数
2比例与比率黄金比例、比例计算
3数列与级数等差数列、等比数列
4坐标系与几何直角坐标系、点坐标
5三角形与圆勾股定理、圆周率
6面积与体积长方形、三角形、球体
7简单概率可能性、频率概率
8基础统计平均数、中位数、众数
9时间与速度时间换算、速度计算
10简单方程一元一次方程
11二次函数抛物线、顶点公式
12指数与对数10的幂、log计算
13简单复数复数的加减乘除
14金融数学利息计算、复利增长
15综合练习购物预算、房贷计算
Python代码示例
  • Day 1(分数)
    from fractions import Fraction
    a = Fraction(1, 2) + Fraction(1, 4)  # 3/4
    print(a)
    
  • Day 4(坐标系)
    import matplotlib.pyplot as plt
    plt.plot([0, 3], [0, 4], marker='o')  # 直线斜率4/3
    plt.show()
    
  • Day 9(速度)
    distance = 100  # 100米
    time = 10  # 10秒
    speed = distance / time  # 10 m/s
    print(f"速度: {speed} m/s")
    

🔹 第2阶段:线性代数(Day 16-25)

目标:掌握向量、矩阵运算,理解线性变换,为机器学习打基础。

数学知识点
Day主题核心概念
16向量基础向量加减、点积
17矩阵运算矩阵乘法、转置
18线性方程组高斯消元法
19特征值与特征向量对角化
20奇异值分解(SVD)图像压缩
21行列式计算体积
22正交矩阵旋转、反射
23线性变换二维变换例子
24PCA(主成分分析)数据降维
25综合练习图像变换
Python代码示例
  • Day 19(特征值)
    import numpy as np
    A = np.array([[4, -2], [1, 1]])
    eigenvalues, eigenvectors = np.linalg.eig(A)
    print("特征值:", eigenvalues)
    print("特征向量:\n", eigenvectors)
    
  • Day 22(正交矩阵)
    Q = np.array([[0, 1], [-1, 0]])  # 90度旋转矩阵
    print("Q的转置 Q^T:\n", Q.T)
    print("Q * Q^T:\n", np.dot(Q, Q.T))  # 应该是单位矩阵
    
  • Day 24(PCA降维)
    from sklearn.decomposition import PCA
    X = [[1, 2], [3, 4], [5, 6]]
    pca = PCA(n_components=1)
    X_pca = pca.fit_transform(X)
    print("降维结果:", X_pca)
    

🔹 第3阶段:微积分(Day 26-35)

目标:理解导数、积分、梯度,掌握反向传播基础。

数学知识点
Day主题核心概念
26导数基础斜率、导数定义
27偏导数多元函数导数
28链式法则复合函数求导
29梯度下降优化算法
30积分基础曲线下面积
31定积分计算累积量计算
32微分方程简单ODE
33泰勒展开函数近似
34数值积分梯形法
35综合练习损失函数优化
Python代码示例
  • Day 29(梯度下降)
    import numpy as np
    def gradient_descent(x, learning_rate=0.1, epochs=100):
        for _ in range(epochs):
            grad = 2 * x  # f(x) = x^2 的导数
            x -= learning_rate * grad
        return x
    print(gradient_descent(5))  # 应该接近0
    
  • Day 32(微分方程)
    from scipy.integrate import solve_ivp
    def dydt(t, y): return t * y  # dy/dt = t*y
    sol = solve_ivp(dydt, [0, 1], [1])
    print("解:", sol.y[0][-1])  # y(1)
    

🔹 第4阶段:概率与统计(Day 36-50)

目标:掌握概率分布、贝叶斯定理、统计检验,理解机器学习中的概率模型。

数学知识点
Day主题核心概念
36概率基础事件、概率空间
37条件概率贝叶斯定理
38随机变量离散与连续
39常见分布二项、泊松、正态
40期望与方差统计量
41中心极限定理大数定律
42假设检验p值、置信区间
43协方差与相关信息度量
44信息熵信息论基础
45KL散度分布差异
46综合练习随机模拟
47朴素贝叶斯分类算法
48蒙特卡洛模拟积分估算
49马尔可夫链状态转移
50综合项目随机游走模拟
Python代码示例
  • Day 37(贝叶斯定理)
    def bayes(P_A, P_B_given_A, P_B):
        return (P_A * P_B_given_A) / P_B
    P_A = 0.01  # 疾病患病率
    P_B_given_A = 0.99  # 检测出病概率
    P_B = 0.02  # 检测出病总概率(包括误诊)
    P_A_given_B = bayes(P_A, P_B_given_A, P_B)
    print(f"真阳性概率: {P_A_given_B:.2%}")
    
  • Day 47(朴素贝叶斯)
    from sklearn.naive_bayes import GaussianNB
    X = [[1, 2], [3, 4], [5, 6], [7, 8]]
    y = [0, 0, 1, 1]
    model = GaussianNB().fit(X, y)
    print("预测:", model.predict([[2, 3]]))  # 应该预测0
    

🔹 第5阶段:优化与数值计算(Day 51-60)

目标:理解优化算法,掌握数值计算方法,为机器学习模型训练打基础。

学知识点
Day主题核心概念
51优化目标损失函数
52梯度下降变体SGD, Adam
53牛顿法二次收敛
54数值线性代数矩阵分解
55插值与拟合曲线拟合
56数值积分复化积分
57微分方程数值解Runge-Kutta
58KKT条件约束优化
59综合练习神经网络优化
60综合项目训练线性回归模型
Python代码示例
  • Day 52(随机梯度下降)
    import numpy as np
    def sgd(X, y, learning_rate=0.01, epochs=100):
        w = np.zeros(X.shape[1])
        for _ in range(epochs):
            for i in range(X.shape[0]):
                grad = 2 * X[i] * (np.dot(X[i], w) - y[i])
                w -= learning_rate * grad
        return w
    X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
    y = np.dot(X, np.array([1, 2])) + 3
    print("SGD权重:", sgd(X, y))
    
  • Day 60(线性回归)
    from sklearn.linear_model import LinearRegression
    X = [[1], [2], [3], [4]]
    y = [2, 4, 6, 8]
    model = LinearRegression().fit(X, y)
    print("斜率:", model.coef_[0], "截距:", model.intercept_)
    

📚 学习建议

  1. 每日坚持:哪怕只学1小时,也要保持连贯性。
  2. 动手实践:每学一个知识点,立刻用Python实现。
  3. 循序渐进:不要跳过基础,扎实掌握每个概念。
  4. 项目驱动:通过实际项目巩固所学知识。

按照这个计划,60天后你将掌握AI数学进阶知识,并能用Python实现相关算法!🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩公子的Linux大集市

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值