文章目录 一、基础类型深度解析 1. 整型(`int`) 2. 浮点型(`float`) 3. 布尔型(`bool`) 4. 复数型(`complex`) 二、高级类型与精度控制 1. Decimal模块(高精度金融计算) 2. Fraction模块(分数运算) 三、性能关键场景对比 1. 循环计算优化 2. 内存占用对比 四、类型转换陷阱 1. 隐式转换风险 2. 显式转换最佳实践 五、数据分析实战案例 案例1:人口统计数据处理 案例2:科学实验数据清洗 六、总结与决策树 在数据分析中,数字类型的理解和选择直接影响计算性能、内存占用及精度控制。以下是深度解析和实用示例: 一、基础类型深度解析 1. 整型(int) 底层原理: 动态长度(Python3无long类型) 存储结构:符号位 + 绝对值数组(类似Java的BigInteger) x = 10**1000 # 支持超大整数,溢出自动升级存储结构 数据分析实践: 内存优化: