Problem
Solution
给定一棵二叉树,返回该二叉树的中序(inorder)遍历结果。
首先,递归版本。采用递归的写法,思路很简单。但是虽然时间空间复杂度也是渐近意义上的O(n)但是常系数会很大,改为迭代法可以很有效的降低时间空间复杂度。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> ans;
vector<int> inorderTraversal(TreeNode* root) {
if(root==NULL) return ans;
if(root->left) inorderTraversal(root->left);
ans.push_back(root->val);
if(root->right) inorderTraversal(root->right);
return ans;
}
};
第二,试着写迭代版本。我们要如何把上述递归的过程用迭代来模拟呢?
中序遍历的过程可以总结成如下图所示的过程,先找到最左下角的那个节点Ld(这个节点肯定没有左子树了,可能有右子树),那么根据中序遍历左中右的顺序,我们可以直接访问Ld,然后再进入Ld的右子树Rd(可能为空),若有的话,可以对Rd做与上述相同的操作,即可遍历整棵二叉树。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void gotoleft(TreeNode* x,stack<TreeNode*> &st,vector<int> &ans)
{
while(x)
{
st.push(x);
x=x->left;
}
return;
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> ans;
stack<TreeNode*> st;
TreeNode* p=root;
while(true)
{
gotoleft(p,st,ans);
if(st.empty()) break;
p=st.top();
st.pop();
ans.push_back(p->val);
p=p->right;
}
return ans;
}
};