机器学习复习手册
原因 是 K 取值小的时候(如 k==1),仅用较小的领域中的训练样本进行预测,模型 拟合能力比较强,决策就是只要紧跟着最近的训练样本(邻居)的结果。但是,当训练集包含”噪声样本“时,模型也很容易受这些噪声样本的影响出现过拟合情况,噪声样本在哪个位置,决策边界就会画到哪,这样会增大"学习" 的方差,也就是容易过拟合。K 值取值太大时,情况相反,容易欠拟合。(生成模型就是要学习 x 和 y 的联合概 率分布 P(x,y),然后根据贝叶斯公式来求得条件概率 P(y∣x),预测条件概率最大的y)。
原创
2024-03-27 15:15:08 ·
794 阅读 ·
0 评论